Dynamically Broken Symmetry in Periodically Gated Quantum Dots: Charge Accumulation and DC-current

Time-dependent electron transport through a quantum dot and double quantum dot systems in the presence of polychromatic external periodic quantum dot energy-level modulations is studied within the time evolution operator method for a tight-binding Hamiltonian. Analytical relations for the dc-current...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Kwapiński, T., Kohler, S., Hänggi, P.
Формат: Стаття
Мова:English
Опубліковано: Відділення фізики і астрономії НАН України 2010
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/13289
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dynamically Broken Symmetry in Periodically Gated Quantum Dots: Charge Accumulation and DC-current / T. Kwapiński, S. Kohler, P. Hänggi // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 85-94. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Time-dependent electron transport through a quantum dot and double quantum dot systems in the presence of polychromatic external periodic quantum dot energy-level modulations is studied within the time evolution operator method for a tight-binding Hamiltonian. Analytical relations for the dc-current flowing through the system and the charge accumulated on a quantum dot are obtained for the zero-temperature limit. It is shown that, in the presence of periodic perturbations, the sideband peaks of the transmission are related to the combination of frequencies of the applied modulations. For a double quantum dot system under the influence of polychromatic perturbations, the quantum pump effect is studied in the absence of a source (drain) and static bias voltages. In the presence of a spatial symmetry, the charge is pumped through the system due to a broken generalized parity symmetry.