Modified Bogolyubov’s Derivation of the Two-fluid Hydrodynamics

A consistent microscopic derivation of the two-fluid hydrodynamics for superfluid helium-4 in the ideal approximation is represented The starting point in our formalism is a system of Heisenberg’s equation of motion for both normal and anomalous correlation functions. The use of a mixed Wigner repre...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Shygorin, P., Svidzynskyj, A.
Формат: Стаття
Мова:English
Опубліковано: Відділення фізики і астрономії НАН України 2010
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/13292
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modified Bogolyubov’s Derivation of the Two-fluid Hydrodynamics / P. Shygorin, A. Svidzynskyj // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 109-115. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A consistent microscopic derivation of the two-fluid hydrodynamics for superfluid helium-4 in the ideal approximation is represented The starting point in our formalism is a system of Heisenberg’s equation of motion for both normal and anomalous correlation functions. The use of a mixed Wigner representation allows us to perform the expansion of the equations of motion for correlation functions in gradients directly, very easily, and with a rigorous mathematics. To find the hydrodynamic flows, we have constructed a local equilibrium statistical operator for superfluid helium in the reference frame, where the condensate is at rest.