Modified Bogolyubov’s Derivation of the Two-fluid Hydrodynamics
A consistent microscopic derivation of the two-fluid hydrodynamics for superfluid helium-4 in the ideal approximation is represented The starting point in our formalism is a system of Heisenberg’s equation of motion for both normal and anomalous correlation functions. The use of a mixed Wigner repre...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Відділення фізики і астрономії НАН України
2010
|
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/13292 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Modified Bogolyubov’s Derivation of the Two-fluid Hydrodynamics / P. Shygorin, A. Svidzynskyj // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 109-115. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A consistent microscopic derivation of the two-fluid hydrodynamics for superfluid helium-4 in the ideal approximation is represented The starting point in our formalism is a system of Heisenberg’s equation of motion for both normal and anomalous correlation functions. The use of a mixed Wigner representation allows us to perform the expansion of the equations of motion for correlation functions in gradients directly, very easily, and with a rigorous mathematics. To find the hydrodynamic flows, we have constructed a local equilibrium statistical operator for superfluid helium in the reference frame, where the condensate is at rest. |
---|