New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter
In this article, we study the properties of 6 nm liquid crystal (LC)–NsM system that forms highly stable solutions in the nematic liquid crystal 4-cyano-4-n-pentylbiphenyl (5CB). The nanostructure is covalently functionalized with 4-sulfanylphenyl-4-[4 (octyloxy) phenyl] benzoate (SOPB), which resem...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2017
|
Назва видання: | Наносистеми, наноматеріали, нанотехнології |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/133486 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter / A. Attoui, A. Boualleg, S. Redadaa // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2017. — Т. 15, № 3. — С. 389–399. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-133486 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1334862018-05-30T03:02:51Z New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter Attoui, A. Boualleg, A. Redadaa, S. In this article, we study the properties of 6 nm liquid crystal (LC)–NsM system that forms highly stable solutions in the nematic liquid crystal 4-cyano-4-n-pentylbiphenyl (5CB). The nanostructure is covalently functionalized with 4-sulfanylphenyl-4-[4 (octyloxy) phenyl] benzoate (SOPB), which resembles the structure of the 5CB molecules. The use of LCs as an NsM with phased array antennas is for steering the beam pattern electronically with high effectiveness, managing to get minimum side-lobe levels and narrow beam widths. Normally, phase shifters are the devices in a phased array antenna that allows the radiated beam to be steered in the direction. The objective of this work is to investigate a phase shifter in a linear antenna array for angle scan. A microstrip antenna array is used since it is simple to be designed and fabricated. Ansoft Designer Software is used to simulate the phase shifter for applications to antenna array with LC directed synthesis of NsM. In our paper, we present a new external command with a new influence of the static magnetic bias field of liquid crystal for shifted radiation pattern. В этой статье мы изучаем свойства системы жидкий кристалл (LC)–NsM размером в 6 нм, которая образует высокостабильные растворы в нематическом жидком кристалле 4-циано-4-н-пентилбифенила (5CB). Наноструктура ковалентно функционализирована с 4-сульфанилфенил-4-[4 (октилокси) фенил] бензоатом (SOPB), который напоминает структуру молекул 5CB. Использование LCs в качестве NsM с антеннами с фазированной решёткой предназначено для управления пучком электронным способом, с высокой эффективностью позволяя получить минимальные уровни боковых лепестков и узкую ширину луча. Обычно фазовращатели представляют собой устройства в фазированной антенной решётке, что позволяет управлять излучаемым лучом по направлению. Целью этой работы является исследование фазового сдвига в линейной антенной решётке для сканирования угла. Используется микрополосковая антенная решётка, поскольку она проста в проектировании и изготовлении. Ansoft Designer Software используется для моделирования фазового сдвига ради приложений в антенной решётке с синтезом NsM, направленным LC. В нашей статье мы представляем новую внешнюю команду с новым влиянием статического подмагничивающего поля жидкого кристалла для смещения диаграммы направленности. У цій статті ми вивчаємо властивості системи рідкий кристал (LC)–NsM розміром у 6 нм, яка утворює високостабільні розчини в нематичному рідкому кристалі 4-ціано-4-н-пентілбіфеніла (5CB). Наноструктуру ковалентно функціоналізовано із 4-сульфанілфеніл-4-[4 (октілоксі) феніл] бензоатом (SOPB), який нагадує структуру молекул 5CB. Використання LCs як NsM із антенами з фазованою ґратницею призначається для управління жмутом електронним способом, із високою ефективністю уможливлюючи одержати мінімальні рівні бічних пелюсток і вузькі ширини променя. Зазвичай фазообертачі являють собою пристрої у фазованій антенній ґратниці, що уможливлює керувати випромінюваним променем за напрямком. Метою цієї роботи є дослідження фазового зсуву в лінійній антенній ґратниці для сканування кута. Використовується мікросмужкова антенна ґратниця, оскільки вона є простою у проєктуванні та виготовленні. Ansoft Designer Software використовується для моделювання фазового зсуву задля застосувань в антенній ґратниці із синтезою NsM, спрямованою LC. У нашій статті ми представляємо нову зовнішню команду з новим впливом статичного підмагнетувального поля рідкого кристалу задля зміщення діяграми спрямованости. 2017 Article New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter / A. Attoui, A. Boualleg, S. Redadaa // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2017. — Т. 15, № 3. — С. 389–399. — Бібліогр.: 11 назв. — англ. 1816-5230 PACS: 07.60.-j, 07.85.-m, 42.70.Df, 42.79.-e, 81.07.Oj, 84.40.Ba, 85.85.+j http://dspace.nbuv.gov.ua/handle/123456789/133486 en Наносистеми, наноматеріали, нанотехнології Інститут металофізики ім. Г.В. Курдюмова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this article, we study the properties of 6 nm liquid crystal (LC)–NsM system that forms highly stable solutions in the nematic liquid crystal 4-cyano-4-n-pentylbiphenyl (5CB). The nanostructure is covalently functionalized with 4-sulfanylphenyl-4-[4 (octyloxy) phenyl] benzoate (SOPB), which resembles the structure of the 5CB molecules. The use of LCs as an NsM with phased array antennas is for steering the beam pattern electronically with high effectiveness, managing to get minimum side-lobe levels and narrow beam widths. Normally, phase shifters are the devices in a phased array antenna that allows the radiated beam to be steered in the direction. The objective of this work is to investigate a phase shifter in a linear antenna array for angle scan. A microstrip antenna array is used since it is simple to be designed and fabricated. Ansoft Designer Software is used to simulate the phase shifter for applications to antenna array with LC directed synthesis of NsM. In our paper, we present a new external command with a new influence of the static magnetic bias field of liquid crystal for shifted radiation pattern. |
format |
Article |
author |
Attoui, A. Boualleg, A. Redadaa, S. |
spellingShingle |
Attoui, A. Boualleg, A. Redadaa, S. New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter Наносистеми, наноматеріали, нанотехнології |
author_facet |
Attoui, A. Boualleg, A. Redadaa, S. |
author_sort |
Attoui, A. |
title |
New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter |
title_short |
New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter |
title_full |
New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter |
title_fullStr |
New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter |
title_full_unstemmed |
New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter |
title_sort |
new microstrip resonator of nanostructured materials in a liquid-crystal-based phase shifter |
publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/133486 |
citation_txt |
New Microstrip Resonator of Nanostructured Materials in a Liquid-Crystal-Based Phase Shifter / A. Attoui, A. Boualleg, S. Redadaa // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2017. — Т. 15, № 3. — С. 389–399. — Бібліогр.: 11 назв. — англ. |
series |
Наносистеми, наноматеріали, нанотехнології |
work_keys_str_mv |
AT attouia newmicrostripresonatorofnanostructuredmaterialsinaliquidcrystalbasedphaseshifter AT bouallega newmicrostripresonatorofnanostructuredmaterialsinaliquidcrystalbasedphaseshifter AT redadaas newmicrostripresonatorofnanostructuredmaterialsinaliquidcrystalbasedphaseshifter |
first_indexed |
2025-07-09T19:03:18Z |
last_indexed |
2025-07-09T19:03:18Z |
_version_ |
1837197219133915136 |
fulltext |
389
PACS numbers: 07.60.-j, 07.85.-m, 42.70.Df, 42.79.-e, 81.07.Oj, 84.40.Ba, 85.85.+j
New Microstrip Resonator of Nanostructured Materials
in a Liquid-Crystal-Based Phase Shifter
A. Attoui, A. Boualleg, and S. Redadaa
University of 8 May 1945,
Faculty of Science and Technology,
Department of Electronics and Telecommunication,
Laboratory of Telecommunications,
24000–BP 401 Guelma, Algeria
Nanostructured materials (NsM) are materials with a microstructure, the
characteristic length scale of which is of the order of magnitude a few
(typically 1–100) nanometres. A nanostructure is a structure of an inter-
mediate size between the microscopic structures and the molecular ones.
In this article, we study the properties of 6 nm liquid crystal (LC)–NsM
system that forms highly stable solutions in the nematic liquid crystal 4-
cyano-4-n-pentylbiphenyl (5CB). The nanostructure is covalently function-
alized with 4-sulfanylphenyl-4-[4 (octyloxy) phenyl] benzoate (SOPB),
which resembles the structure of the 5CB molecules. The use of LCs as an
NsM with phased array antennas is for steering the beam pattern elec-
tronically with high effectiveness, managing to get minimum side-lobe
levels and narrow beam widths. Normally, phase shifters are the devices
in a phased array antenna that allows the radiated beam to be steered in
the direction. The objective of this work is to investigate a phase shifter
in a linear antenna array for angle scan. A microstrip antenna array is
used since it is simple to be designed and fabricated. Ansoft Designer
Software is used to simulate the phase shifter for applications to antenna
array with LC directed synthesis of NsM. In our paper, we present a new
external command with a new influence of the static magnetic bias field
of liquid crystal for shifted radiation pattern.
Наноструктуровані матеріяли (NsM) представляють собою матеріяли із
мікроструктурою, характерні довжини якої складають близько декіль-
кох (зазвичай 1–100) нанометрів. Наноструктура є структурою промі-
жного розміру між мікроскопічними та молекулярними структурами.
У цій статті ми вивчаємо властивості системи рідкий кристал (LC)–
NsM розміром у 6 нм, яка утворює високостабільні розчини в нематич-
ному рідкому кристалі 4-ціано-4-н-пентілбіфеніла (5CB). Нанострукту-
ру ковалентно функціоналізовано із 4-сульфанілфеніл-4-[4 (октілоксі)
Наносистеми, наноматеріали, нанотехнології
Nanosistemi, Nanomateriali, Nanotehnologii
2017, т. 15, № 3, сс. 389–399
2017 ІÌÔ (Іíñòèòóò ìåòàëîôіçèêè
іì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàїíи)
Надруковано в Україні.
Ôотокопіювання дозволено
тільки відповідно до ліцензії
390 A. ATTOUI, A. BOUALLEG, and S. REDADAA
феніл] бензоатом (SOPB), який нагадує структуру молекул 5CB. Вико-
ристання LCs як NsM із антенами з фазованою ґратницею призначаєть-
ся для управління жмутом електронним способом, із високою ефектив-
ністю уможливлюючи одержати мінімальні рівні бічних пелюсток і ву-
зькі ширини променя. Зазвичай фазообертачі являють собою пристрої у
фазованій антенній ґратниці, що уможливлює керувати випромінюва-
ним променем за напрямком. Метою цієї роботи є дослідження фазово-
го зсуву в лінійній антенній ґратниці для сканування кута. Використо-
вується мікросмужкова антенна ґратниця, оскільки вона є простою у
проєктуванні та виготовленні. Ansoft Designer Software використову-
ється для моделювання фазового зсуву задля застосувань в антенній
ґратниці із синтезою NsM, спрямованою LC. У нашій статті ми пред-
ставляємо нову зовнішню команду з новим впливом статичного підмаг-
нетувального поля рідкого кристалу задля зміщення діяграми спрямо-
ваности.
Наноструктурированные материалы (NsM) представляют собой матери-
алы с микроструктурой, характерные длины которой составляют по-
рядка нескольких (обычно 1–100) нанометров. Наноструктура пред-
ставляет собой структуру промежуточного размера между микроскопи-
ческими и молекулярными структурами. В этой статье мы изучаем
свойства системы жидкий кристалл (LC)–NsM размером в 6 нм, кото-
рая образует высокостабильные растворы в нематическом жидком кри-
сталле 4-циано-4-н-пентилбифенила (5CB). Наноструктура ковалентно
функционализирована с 4-сульфанилфенил-4-[4 (октилокси) фенил]
бензоатом (SOPB), который напоминает структуру молекул 5CB. Ис-
пользование LCs в качестве NsM с антеннами с фазированной решёткой
предназначено для управления пучком электронным способом, с высо-
кой эффективностью позволяя получить минимальные уровни боковых
лепестков и узкую ширину луча. Обычно фазовращатели представляют
собой устройства в фазированной антенной решётке, что позволяет
управлять излучаемым лучом по направлению. Целью этой работы яв-
ляется исследование фазового сдвига в линейной антенной решётке для
сканирования угла. Используется микрополосковая антенная решётка,
поскольку она проста в проектировании и изготовлении. Ansoft Design-
er Software используется для моделирования фазового сдвига ради
приложений в антенной решётке с синтезом NsM, направленным LC. В
нашей статье мы представляем новую внешнюю команду с новым вли-
янием статического подмагничивающего поля жидкого кристалла для
смещения диаграммы направленности.
Key words: nanostructured material, liquid crystal, phased array, phase
shifter, microstrip antenna.
Ключові слова: наноструктурований матеріял, рідкий кристал, фазова-
на антенна ґратниця, фазообертач, мікросмужкова антена.
Ключевые слова: наноструктурированный материал, жидкий кристалл,
фазированная антенная решётка, фазовращатель, микрополосковая ан-
тенна.
STRIP RESONATOR OF NANOSTRUCTURED MATERIALS IN A LIQUID CRYSTAL 391
(Received 13 July, 2017)
1. INTRODUCTION
Frequency agile devices can be realized using semiconductors,
MEMS, ferrites, or ferroelectrics. In this paper, the use of NsM in
LC as a tuneable microwave substrate is described. Up to now, the
dielectric anisotropy of the permittivity and its electrostatic tena-
bility of the LC molecules are mainly used in an inverted microstrip
transmission line technique [1, 2].
A simple and inexpensive device has been designed to change the
phase of the signal to enter a microstrip-electronic scanning anten-
na, where the phase change power influences on the beam direction.
The general structure of the antenna network with electronic scan-
ning is schematically presented in Fig. 1. After this, it is possible
to integrate the phase shifter to the supply line of the printed an-
tenna.
The use of the LC–NsM as a ground plane integrates the phase
shifter to the line, and the change in phase of the signal power is
obtained by the action of the static magnetic field applied to the LC
of NsM.
The choice of these phase shifters is justified by the following
benefits: a good frequency response, a low stray radiation, and a
simple realization.
Fig. 1. Array antenna.
392 A. ATTOUI, A. BOUALLEG, and S. REDADAA
1.2. Nanostructured Materials (NsM)
Nanostructured materials may be defined as those materials whose
structural elements—clusters, crystallites or molecules—have di-
mensions within the range of 1–100 nm. The explosion in both aca-
demic and industrial interest in these materials over the past dec-
ade arises from the remarkable variations in fundamental electrical,
optical and magnetic properties that occur as one progresses from
an ‘infinitely extended’ solid to a particle of material consisting of
a countable number of atoms. This review details recent advances in
the synthesis and investigation of functional nanostructured mate-
rials, focusing on those novel size-dependent physics and chemistry
results when electrons are confined within the nanoscale semicon-
ductor and metal clusters and colloids. Carbon-based nanomaterials
and nanostructures including fullerenes and nanotubes play an in-
creasingly pervasive role in the nanoscale science and technology
and, thus, are described in some depth. Current nanodevice fabrica-
tion methods and the future prospects for nanostructured materials
and nanodevices are discussed [3].
Fig. 2. Classification schema for NsM according to their chemical composi-
tion and the dimensionality (shape) of the crystallites (structural elements)
is forming the NsM. The boundary regions of the rest and second family of
NsM are indicated in black to emphasize the deferent atomic arrangements
in the crystallites and in the boundaries. The chemical composition of the
(black) boundary regions and the crystallites is identical in the rest family.
In the second family, the (black) boundaries are the regions where two
crystals of deferent chemical composition are joined together causing a
steep concentration gradient [3].
STRIP RESONATOR OF NANOSTRUCTURED MATERIALS IN A LIQUID CRYSTAL 393
2. THEORETICAL DETAILS
2.1. Liquid Crystal Modelling
In this study, we present LC. Under the applications, we use the LC
nematic phase in an ambient temperature. The nematic LCs are
characterized by their centre of mass of the molecules showing no
order of position. However, molecules procure an orientation order
in case of a long distance. Their long-distance and long axes are
parallel to an average direction defined by the director vector n
(Fig. 3) [1, 4].
a b c
Fig. 3. Representation of molecules CL in a nematic phase.
Fig. 4. Two-dimensional model of a nanostructured material. The atoms in
the centres (sites) of the crystals are indicated in black. The ones in the
boundary core regions are represented as open circles [3].
394 A. ATTOUI, A. BOUALLEG, and S. REDADAA
In this phase, the LCs are anisotropic materials with complex
permittivity presented in the form of a tightening [1]:
||
0 0
0 0
0 0
. (1)
The dielectric anisotropy is defined by the following equation:
||
. (2)
Here, is a dielectric anisotropy,
||
—LC permittivity with DC
voltage,
—LC permittivity without DC voltage.
The liquid crystal is simulated as K15 (5cb), which exhibits only
the nematic phase between 22.5 and 35. Figure 5 shows the dielec-
tric characterization of K15 at room temperature [1, 2].
The characteristics of liquid crystals are summarized in Table.
2.2. Phase Shifter Agile Frequency Liquid Crystal Substrate
The order of liquid crystal within the microwave substrate in the
case of classic line microstrip is reached between input and output,
the gap is fixed at a given frequency. This phase shift depends on
both the effective permittivity and the line length as follows:
eff
360
r
LF
Q
c
. (3)
Fig. 5. Representation of the CL molecules in a nematic phase.
TABLE. Characteristics of a liquid crystal [1].
CL
tan
||
tan||
5CB 2.64 0.031 2.98 0.014
STRIP RESONATOR OF NANOSTRUCTURED MATERIALS IN A LIQUID CRYSTAL 395
When we use the substrate of a liquid-crystal structure defined
above, it will be possible to vary the effective permittivity on the
substrate using, in addition to the microwave signal, a low-
frequency voltage command (Fig. 6) [1, 4–7].
The permittivity seen by the microwave signal is noted as
eff
( )
r
0 .
This permittivity is related mainly to the permittivity of a liquid
crystal,
r
. Because of electric-field command, the molecules of a
liquid crystal will gradually move perpendicular to the electrodes
(n E) to saturation permittivity.
eff
( )
r
E is related mainly to the
liquid crystal permittivity
||r
.
The variation of permittivity will induce the change in the wave-
length guided; therefore, the change in phase is given by the follow-
ing relationship [1, 4, 5, 9]:
eff eff
360 ( ) ( )
r r
LF
c
E 0
. (4)
2.3. Presentation of the Resonator-Based Phase Shifters
The prototype nematic LC structure of high dielectric anisotropy
from 2.7 to 2.9 is given by K15 (5CB) of Merck. Then, the focus
will be on the dimensional requirements for the phase shifter in or-
der to get a resonance frequency at 38 GHz. The considered geome-
try (Figs. 7–9) consists of three elements: ground plane composed of
gaps (which are filled by a liquid crystal), conductor, and substrate.
The wave propagation is not affected; the field is more concen-
trated in the LC. The application of DC voltage to the LC, we arbi-
trarily set the resonance frequency to 38 GHz.
Fig. 6. Influence of the electric field command on the orientation of liquid-
crystal molecules.
396 A. ATTOUI, A. BOUALLEG, and S. REDADAA
3. RESULTS AND DISCUSSION
The simulation is performed in the frequency range 30–50 GHz to
obtain the resonator characteristics. The obtained results were com-
puted using Ansoft HFSS 14. The purpose of the present study was
to establish the effect of varying the NsM (LC) permittivity materi-
al and anisotropy value on the phase range and the reflection loss.
Simulations were performed for the change in LC permittivity of
the material from the proposed LC parts corresponding to the LC
material, which was used. As the permittivity value is swept the
beam, the substrate is realized by DUROID 4003. The NsM–liquid
crystal is introduced between the ground plane gaps. These results
Fig. 7. Structure of a microstrip resonator.
Fig. 8. Structure of a ground plane. Fig. 9. Structure of the LC parts.
STRIP RESONATOR OF NANOSTRUCTURED MATERIALS IN A LIQUID CRYSTAL 397
were simulated with and without driving voltage (0 V and 7 V).
Figure 10 illustrates the simulated results of the return losses
without applied DC voltage. In Figure 10, it can be seen that the
simulated return loss achieved 58 dB from 38 to 40 GHz.
Figure 11 depict the simulated results of phase angle |S21| [in de-
grees] of resonator.
Figure 12 shows the results of resonance frequency simulation,
with and without control voltage. It is noticeable that the resonance
frequency of beat for an applied electric field of 7 V.
This variation of resonance frequency data may result from the
gap in the precision of the values found for the LC dielectric per-
mittivity.
According to Figure 12, the simulated return loss achieved
66.1256 dB for 38.76 GHz and 53.1208 dB for 39.76 GHz. The
Fig. 10. Simulated reflection loss (S11).
Fig. 11. Phase angle |S21| [in degrees] of resonator.
30.00 32.50 35.00 37.50 40.00 42.50 45.00 47.50 50.00
Freq [GHz]
-60.00
-55.00
-50.00
-45.00
-40.00
-35.00
-30.00
-25.00
-20.00
d
B
(S
(1
,1
))
0
V
Ansoft LLC HFSSDesign1XY Plot 87 ANSOFT
Curve Info
dB(S(1,1)) 0 V
Setup1 : Sw eep1
30.00 32.50 35.00 37.50 40.00 42.50 45.00 47.50 50.00
Freq [GHz]
-200.00
-150.00
-100.00
-50.00
0.00
50.00
100.00
150.00
200.00
p
h
a
s
e
S
2
1
(d
e
g
)
[d
e
g
]
Ansoft LLC HFSSDesign1XY Plot 94 ANSOFT
m 1
Curve Info
phase S21(deg)
Setup1 : Sw eep1
Name X Y
m 1 39.5200 -179.9927
398 A. ATTOUI, A. BOUALLEG, and S. REDADAA
resonance frequency variation (Fr) is of 1 GHz.
Figure 13 demonstrates the resonance frequency obtained from
the excitations positions. This Figure gives the evolution variation
of reflection loss (S11) depending on excitation position.
Corresponding to the comparison between excitation position
voltage (EX 2 or 3) and (EX 123), at an applied electric field of
7 V shown in Fig. 13, the obtained value of the loss difference is
10.5313 dB, and variation of resonance frequency is 0.8.
4. CONCLUSION
We presented a study on the resonator of nanostructured materials
Fig. 12. Measured reflection loss at two different voltage states.
Fig. 13. Measured reflection loss at different excitation positions of volt-
age states.
30.00 32.50 35.00 37.50 40.00 42.50 45.00 47.50 50.00
Freq [GHz]
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
re
fl
e
c
ti
o
n
l
o
s
s
S
(1
1
)d
b
Ansoft LLC HFSSDesign1XY Plot 89 ANSOFT
m 1
m 2
EX 7 V
NO EX (0 V)
Curve Info
dB(S(1,1)) OV
Imported
dB(S(1,1)) EX 7 V
Imported
Name X Y
m 1 38.7600 -66.1257
m 2 39.7600 -53.3508
STRIP RESONATOR OF NANOSTRUCTURED MATERIALS IN A LIQUID CRYSTAL 399
in a liquid crystal based on the influence of the external excitation
tension.
The proposed structure based on three parts of LC–NsM were de-
signed and simulated. The resonance frequency variation confirmed
the frequency adjustment ability of LC–NsM based devices; the ex-
tent of adjustment depends on the LC anisotropy. The simulation of
reflection return loss has been greatly improved by about 10 dB
along with the variation of the simulation resonance frequency of 1
GHz.
REFERENCES
1. A. Attoui and A. Boualleg, Metallurgical and Mining Industry, 7: 134
(2015).
2. S. Missaoui, A. Gharbi, and M. Kaddour, Journal of Chemical Engineering
and Materials Science, 2, No. 7: 96 (2011).
3. H. Gleiter, Acta Metallurgica, 48, Iss. 1: 1 (2000).
4. S. Mueller, C. Felber, P. Scheele, M. Wittek, C. Hock, and R. Jakoby,
European Microwave Conference (2005), vol. 1, p. 1.
5. F. A. Tahir and H. Aubert, Progress in Electromagnetics Research, 144: 1
(2010).
6. V. A. Tolmachev, V. A. Melnikov, A. V. Baldycheva, K. Berwick, and
T. S. Perova, Progress in Electromagnetics Research, 122: 293 (2012).
7. Y. T. Kim, Journal of the Korean Physical Society, 49, No. 3: 1143 (2006).
8. B. A. Belyaev, A. A. Leksikov, A. M. Serzhantov, and V. F. Shabanov,
Technical Physics Letters, 34, No. 6: 463 (2008).
9. Z. Du, V. Viikari, J. A. Laurinaho, A. Tamminen, and A. V. Raëais Aëanen,
Progress in Electromagnetics Research, 148: 15 (2014).
10. F. Sahbani, N. Lemcel Tentillier, A. Gharsallah, and A. Gharbi, IEEE 3rd
International Design and Test Workshop—IDT 2008 (2008), No. 978-1-
4244-3477-0/08/25.00, p. 78.
11. P. Anand, S. Sharma, D. Sood, and C. C. Tripathi, 1st International Confer-
ence ET2ECN-2012 (2012), vols. 1–3, No. 978-1-4673-1627-9/12/31.00, p. 8.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10686
|