Дифференциально-алгебраические уравнения и динамические системы на многообразиях
Рассмотрены актуальные проблемы современной теории динамических систем на многообразиях, активно развивающихся в настоящее время. Дан краткий обзор таких направлений теории динамических систем. С использованием алгебр дуальных чисел, кватернионных алгебр, алгебр бикватернионов (дуальных кватернионов...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
Назва видання: | Кибернетика и системный анализ |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/133684 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Дифференциально-алгебраические уравнения и динамические системы на многообразиях / Ю.Г. Кривонос, В.П. Харченко, Н.М. Глазунов // Кибернетика и системный анализ. — 2016. — Т. 52, № 3. — С. 83-96. — Бібліогр.: 32 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассмотрены актуальные проблемы современной теории динамических систем на многообразиях, активно развивающихся в настоящее время. Дан краткий обзор таких направлений теории динамических систем. С использованием алгебр дуальных чисел, кватернионных алгебр, алгебр бикватернионов (дуальных кватернионов) разработаны приложения к исследованию бесконечно малых окрестностей и инфинитезимальных деформаций многообразий (схем). Кратко представлены теория дифференциально-алгебраических уравнений над полем вещественных чисел и их динамика, а также элементы оптимизации траекторий соответствующих динамических систем. На основе связности в расслоениях дано расширение теории дифференциально-алгебраических уравнений на алгебраические многообразия и схемы над произвольными полями и схемами соответственно. |
---|