Математична модель реології фрактально-неоднорідних пластових систем
Досліджено умову «гладкості» фронту поділу складових неоднорідних (гетерогенних) систем на основі аналізу «стрибка» насиченості в функції Баклея-Леверета. Показано, що «стрибок» насиченості відсутній, а фронт поділу просувається стало та зберігає «гладкість», якщо рухомість компоненти, яка витискає,...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
Назва видання: | Математичне та комп'ютерне моделювання. Серія: Технічні науки |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/133756 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Математична модель реології фрактально-неоднорідних пластових систем / С.А. Положаєнко, В.С. Савіч // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 98-107. — Бібліогр.: 16 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Досліджено умову «гладкості» фронту поділу складових неоднорідних (гетерогенних) систем на основі аналізу «стрибка» насиченості в функції Баклея-Леверета. Показано, що «стрибок» насиченості відсутній, а фронт поділу просувається стало та зберігає «гладкість», якщо рухомість компоненти, яка витискає, не перевищує рухомість компоненти, яка витискається. Також показано, що порушення «гладкості» фронту поділу призводить до фрактально-неоднорідної структури процесу реології. Отримано числові значення фрактальної розмірності фронту поділу для реологічного процесу, який розвивається у реальних геологічних умовах. Запропоновано математичну модель фрактально-неоднорідної системи в класі варіаційних нерівностей. |
---|