Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами

У статті встановлено необхідні, достатні умови і критерії екстремальності елемента для задачі найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації фіксованого відображення з множини неперервних відображень з компактними опуклими образами підмножиною цієї множини. Отримано ни...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Гудима, У.В., Гнатюк, В.О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2016
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/133908
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами / У.В. Гудима, В.О. Гнатюк // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 22-43. — Бібліогр.: 15 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-133908
record_format dspace
spelling irk-123456789-1339082018-06-10T03:03:24Z Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами Гудима, У.В. Гнатюк, В.О. У статті встановлено необхідні, достатні умови і критерії екстремальності елемента для задачі найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації фіксованого відображення з множини неперервних відображень з компактними опуклими образами підмножиною цієї множини. Отримано низку допоміжних результатів, які становлять і самостійний інтерес. The necessary and sufficient conditions and criteria of the extremal element for the problem of the best at sense of the weighting Hausdorf’s distance of uniform approximation of fixed map from set of continuous maps with compact convex images by subset of this set are proved in the article. 2016 Article Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами / У.В. Гудима, В.О. Гнатюк // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 22-43. — Бібліогр.: 15 назв. — укр. 2308-5878 http://dspace.nbuv.gov.ua/handle/123456789/133908 517.5 uk Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
description У статті встановлено необхідні, достатні умови і критерії екстремальності елемента для задачі найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації фіксованого відображення з множини неперервних відображень з компактними опуклими образами підмножиною цієї множини. Отримано низку допоміжних результатів, які становлять і самостійний інтерес.
format Article
author Гудима, У.В.
Гнатюк, В.О.
spellingShingle Гудима, У.В.
Гнатюк, В.О.
Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Гудима, У.В.
Гнатюк, В.О.
author_sort Гудима, У.В.
title Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_short Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_full Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_fullStr Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_full_unstemmed Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_sort задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/133908
citation_txt Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами / У.В. Гудима, В.О. Гнатюк // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 22-43. — Бібліогр.: 15 назв. — укр.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT gudimauv zadačanajkraŝoíurozumínnízvaženoíhausdorfovoívídstanírívnomírnoíaproksimacííumnožiníneperervnihvídobraženʹzkompaktnimiopuklimiobrazami
AT gnatûkvo zadačanajkraŝoíurozumínnízvaženoíhausdorfovoívídstanírívnomírnoíaproksimacííumnožiníneperervnihvídobraženʹzkompaktnimiopuklimiobrazami
first_indexed 2023-10-18T21:06:55Z
last_indexed 2023-10-18T21:06:55Z
_version_ 1796151962190741504