Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
Систематизированны литературные данные по статистической диэлектрической проницаемости воды, чистых криопротекторов, их водных растворов и смесей. Построены эмпирические полиномиальные уравнения для расчета статистической диэлектрической проницаемости воды и чистых криопротекторов в зависимости от т...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут проблем кріобіології і кріомедицини НАН України
2015
|
Назва видання: | Проблемы криобиологии и криомедицины |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/134518 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей / А.Ф. Тодрин, Е.В. Тимофеева // Проблемы криобиологии и криомедицины. — 2015. — Т. 25, № 2. — С. 131–150. — Бібліогр.: 106 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-134518 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1345182018-06-14T03:06:17Z Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей Тодрин, А.Ф. Тимофеева, Е.В. Теоретическая и экспериментальная криобиология Систематизированны литературные данные по статистической диэлектрической проницаемости воды, чистых криопротекторов, их водных растворов и смесей. Построены эмпирические полиномиальные уравнения для расчета статистической диэлектрической проницаемости воды и чистых криопротекторов в зависимости от температуры. Для водных растворов и смесей некоторых криопротекторов получены эмпирические полиноминальные уравнения в зависимости от температуры при фиксированных концентрациях или от концентрации при фиксированных температурах. Систематизовані літературні дані по статистичної діелектричної проникності води, чистих кріопротекторів, їх водних розчинів і сумішей. Побудовано емпіричні поліноміальні рівняння для розрахунку статистичної діелектричної проникності води і чистих кріопротекторів в залежності від температури. Для водних розчинів і сумішей деяких кріопротекторів отримані емпіричні поліномінальної рівняння в залежності від температури при фіксованих концентраціях або від концентрації при фіксованих температурах. There were summarised the reported data on static dielectric permeability for water, pure cryoprotectants, their aqueous solutions and mixtures. The empirical polynomial equations to calculate static dielectric permeability for water and pure cryoprotectants depending on temperature were derived. The empirical polynomial equations for aqueous solutions and mixtures of some cryoprotectants depending on either the temperature at fixed concentrations or the concentration at fixed temperatures were obtained. 2015 Article Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей / А.Ф. Тодрин, Е.В. Тимофеева // Проблемы криобиологии и криомедицины. — 2015. — Т. 25, № 2. — С. 131–150. — Бібліогр.: 106 назв. — рос. 0233-7673 http://dspace.nbuv.gov.ua/handle/123456789/134518 547.42:537.226.1/.2 ru Проблемы криобиологии и криомедицины Інститут проблем кріобіології і кріомедицини НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Теоретическая и экспериментальная криобиология Теоретическая и экспериментальная криобиология |
spellingShingle |
Теоретическая и экспериментальная криобиология Теоретическая и экспериментальная криобиология Тодрин, А.Ф. Тимофеева, Е.В. Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей Проблемы криобиологии и криомедицины |
description |
Систематизированны литературные данные по статистической диэлектрической проницаемости воды, чистых криопротекторов, их водных растворов и смесей. Построены эмпирические полиномиальные уравнения для расчета статистической диэлектрической проницаемости воды и чистых криопротекторов в зависимости от температуры. Для водных растворов и смесей некоторых криопротекторов получены эмпирические полиноминальные уравнения в зависимости от температуры при фиксированных концентрациях или от концентрации при фиксированных температурах. |
format |
Article |
author |
Тодрин, А.Ф. Тимофеева, Е.В. |
author_facet |
Тодрин, А.Ф. Тимофеева, Е.В. |
author_sort |
Тодрин, А.Ф. |
title |
Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей |
title_short |
Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей |
title_full |
Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей |
title_fullStr |
Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей |
title_full_unstemmed |
Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей |
title_sort |
теплофизические свойства криопротекторов. viii. диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей |
publisher |
Інститут проблем кріобіології і кріомедицини НАН України |
publishDate |
2015 |
topic_facet |
Теоретическая и экспериментальная криобиология |
url |
http://dspace.nbuv.gov.ua/handle/123456789/134518 |
citation_txt |
Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей / А.Ф. Тодрин, Е.В. Тимофеева // Проблемы криобиологии и криомедицины. — 2015. — Т. 25, № 2. — С. 131–150. — Бібліогр.: 106 назв. — рос. |
series |
Проблемы криобиологии и криомедицины |
work_keys_str_mv |
AT todrinaf teplofizičeskiesvojstvakrioprotektorovviiidiélektričeskaâpronicaemostʹrâdakrioprotektorovihvodnyhrastvorovismesej AT timofeevaev teplofizičeskiesvojstvakrioprotektorovviiidiélektričeskaâpronicaemostʹrâdakrioprotektorovihvodnyhrastvorovismesej |
first_indexed |
2025-07-09T21:35:06Z |
last_indexed |
2025-07-09T21:35:06Z |
_version_ |
1837206772405764096 |
fulltext |
ÓÄÊ 547.42:537.226.1/.2
À.Ô. Òîäðèí*, Å.Â. Òèìîôååâà
Òåïëîôèçè÷åñêèå ñâîéñòâà êðèîïðîòåêòîðîâ.
VIII. Äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü ðÿäà êðèîïðîòåêòîðîâ,
èõ âîäíûõ ðàñòâîðîâ è ñìåñåé
UDC 547.42:537.226.1/.2
A.F. Todrin*, E.V. Timofeyeva
Thermophysical Properties of Cryoprotectants.
VIII. Dielectric Permeability of Some Cryoprotectants,
Their Aqueous Solutions and Mixtures
Ðåôåðàò: Ñèñòåìàòèçèðîâàíû ëèòåðàòóðíûå äàííûå ïî ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè âîäû, ÷èñòûõ
êðèîïðîòåêòîðîâ, èõ âîäíûõ ðàñòâîðîâ è ñìåñåé. Ïîñòðîåíû ýìïèðè÷åñêèå ïîëèíîìèàëüíûå óðàâíåíèÿ äëÿ ðàñ÷åòà
ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè âîäû è ÷èñòûõ êðèîïðîòåêòîðîâ â çàâèñèìîñòè îò òåìïåðàòóðû. Äëÿ âîäíûõ
ðàñòâîðîâ è ñìåñåé íåêîòîðûõ êðèîïðîòåêòîðîâ ïîëó÷åíû ýìïèðè÷åñêèå ïîëèíîìèàëüíûå óðàâíåíèÿ â çàâèñèìîñòè îò
òåìïåðàòóðû ïðè ôèêñèðîâàííûõ êîíöåíòðàöèÿõ èëè îò êîíöåíòðàöèè ïðè ôèêñèðîâàííûõ òåìïåðàòóðàõ.
Êëþ÷åâûå ñëîâà: êðèîïðîòåêòîð, ñòàòè÷åñêàÿ äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü, ýìïèðè÷åñêèå ïîëèíîìèàëüíûå
óðàâíåíèÿ.
Ðåôåðàò: Ñèñòåìàòèçîâàíî ë³òåðàòóðí³ äàí³ ç³ ñòàòè÷íî¿ ä³åëåêòðè÷íî¿ ïðîíèêíîñò³ âîäè, ÷èñòèõ êð³îïðîòåêòîð³â, ¿õ
âîäíèõ ðîç÷èí³â ³ ñóì³øåé. Ïîáóäîâàíî åìï³ðè÷í³ ïîë³íîì³àëüí³ ð³âíÿííÿ äëÿ ðîçðàõóíêó ñòàòè÷íî¿ ä³åëåêòðè÷íî¿ ïðîíèêíîñò³
âîäè ³ ÷èñòèõ êð³îïðîòåêòîð³â â çàëåæíîñò³ â³ä òåìïåðàòóðè. Äëÿ âîäíèõ ðîç÷èí³â ³ ñóì³øåé äåÿêèõ êð³îïðîòåêòîð³â îòðèìàíî
åìï³ðè÷í³ ïîë³íîì³àëüí³ ð³âíÿííÿ â çàëåæíîñò³ â³ä òåìïåðàòóðè ïðè ô³êñîâàíèõ êîíöåíòðàö³ÿõ àáî â³ä êîíöåíòðàö³¿ ïðè
ô³êñîâàíèõ òåìïåðàòóðàõ.
Êëþ÷îâ³ ñëîâà: êð³îïðîòåêòîð, ñòàòè÷íà ä³åëåêòðè÷íà ïðîíèêí³ñòü, åìï³ðè÷í³ ïîë³íîì³àëüí³ ð³âíÿííÿ.
Abstract: There were summarised the reported data on static dielectric permeability for water, pure cryoprotectants, their
aqueous solutions and mixtures. The empirical polynomial equations to calculate static dielectric permeability for water and pure
cryoprotectants depending on temperature were derived. The empirical polynomial equations for aqueous solutions and mixtures of
some cryoprotectants depending on either the temperature at fixed concentrations or the concentration at fixed temperatures were
obtained.
Key words: cryoprotectant, static dielectric permeability, empirical polynomial equations.
*Àâòîð, êîòîðîìó íåîáõîäèìî íàïðàâëÿòü êîððåñïîíäåíöèþ:
óë. Ïåðåÿñëàâñêàÿ, 23, ã. Õàðüêîâ, Óêðàèíà 61015;
òåë.: (+38 057) 373-38-71, ôàêñ: (+38 057) 373-30-84,
ýëåêòðîííàÿ ïî÷òà: todrin@mail.ru
*To whom correspondence should be addressed:
23, Pereyaslavskaya str., Kharkov, Ukraine 61015;
tel.:+380 57 3733871, fax: +380 57 373 3084,
e-mail: todrin@mail.ru
Department of Low Temperature Preservation, Institute for Prob-
lems of Cryobiology and Cryomedicine of the National Academy of
Sciences of Ukraine, Kharkov, Ukraine
Îòäåë íèçêîòåìïåðàòóðíîãî êîíñåðâèðîâàíèÿ, Èíñòèòóò ïðîáëåì
êðèîáèîëîãèè è êðèîìåäèöèíû ÍÀÍ Óêðàèíû, ã. Õàðüêîâ
Ïîñòóïèëà 16.09.2014
Ïðèíÿòà â ïå÷àòü 02.10.2014
Ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû. – 2015. – Ò. 25, ¹1. – Ñ. 131–150.
© 2015 Èíñòèòóò ïðîáëåì êðèîáèîëîãèè è êðèîìåäèöèíû ÍÀÍ Óêðàèíû
Received September, 16, 2014
Accepted October, 02, 2014
Probl. Cryobiol. Cryomed. 2015. 25(1): 131–150.
© 2015 Institute for Problems of Cryobiology and Cryomedicine
îðèãèíàëüíîå èññëåäîâàíèå research article
Äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü – ôèçè÷åñêàÿ
âåëè÷èíà, êîòîðàÿ õàðàêòåðèçóåò ñâîéñòâà èçîëè-
ðóþùåé (äèýëåêòðè÷åñêîé) ñðåäû è ïîêàçûâàåò
çàâèñèìîñòü ýëåêòðè÷åñêîé èíäóêöèè îò íàïðÿæåí-
íîñòè ýëåêòðè÷åñêîãî ïîëÿ. Îíà îïðåäåëÿåòñÿ
ýôôåêòîì ïîëÿðèçàöèè äèýëåêòðèêîâ ïîä äåéñò-
âèåì ýëåêòðè÷åñêîãî ïîëÿ è âåëè÷èíîé äèýëåêòðè-
÷åñêîé âîñïðèèì÷èâîñòè ñðåäû.
Ëþáàÿ ñðåäà óìåíüøàåò íàïðÿæåííîñòü ýëåêò-
ðè÷åñêîãî ïîëÿ ïî ñðàâíåíèþ ñ âàêóóìîì. Äè-
ýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü ïîêàçûâàåò, âî
ñêîëüêî ðàç ýëåêòðè÷åñêîå ïîëå â äèýëåêòðèêå
ìåíüøå ýëåêòðè÷åñêîãî ïîëÿ â âàêóóìå, è äàåò
âîçìîæíîñòü ñóäèòü îá èíòåíñèâíîñòè ïðîöåññîâ
Dielectric permeability is the physical quantity,
characterizing properties of isolating (dielectric) me-
dium and demonstrating the dependency of dielectric
flux density on electric field intensity. It is determined
by the polarizaton effect of dielectrics under the impact
of electric field and by characterizing this effect value
of dielectric susceptibility of medium.
Any medium reduces the electric field intensity if
compared to the vacuum. Dielectric permeability shows
in which extent a electric field in a dielectrics is lower
than in the vacuum and enables judging about the
intensity of polarization processes and the quality of
dielectric. The dielectric polarization is determined by
the total effect of different polarization mechanisms.
132 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
Temperature and frequency dependencies of dielectric
permeability contain information about polarization
mechanisms and their relative contribution into di-
electric polarization. The increase in dielectric perme-
ability results in rise of electric conductivity.
The research aim was to summarize and systema-
tize the reported data, using the derived empirical
formulae to calculate the values of static dielectric
permeability for pure cryoprotectants, their aqueous
solutions and mixtures depending on cryoprotectant
mass concentration and temperature.
Collected published experimental data on static
dielectric permeability for cryoprotectants, aqueous
solutions and mixtures were processed with Excel 2003
software (Microsoft, USA). Along with the data for
cryoprotectants we also processed the published expe-
rimental findings for water, ice and some solutions of
substances, important for both human vital activity and
cryobiology.
The Tables show concentrations in mass percentage
for the substance mentioned first.
The following abbreviations are assumed in the
Tables:
BD – butanediol,
BSA – bovine serum albumin,
CF – chloroform,
DMAc – dimethylacetamide,
DMSO – dimethyl sulfoxide,
DMFA – dimethylformamide,
DEG – diethylene glycol,
EG – ethylene glycol,
FA – formamide,
MAc – methylacetamide,
MFA – methylformamide,
PVP – polyvinylpyrrolidone,
PD – propanediol,
PEG – polyethylene glycol,
TEG – triethylene glycol,
l. p. – liquid phase,
s. p. – solid phase.
ïîëÿðèçàöèè è êà÷åñòâå äèýëåêòðèêà. Ïîëÿðèçàöèÿ
äèýëåêòðèêà îïðåäåëÿåòñÿ ñóììàðíûì äåéñòâèåì
ðàçëè÷íûõ ìåõàíèçìîâ ïîëÿðèçàöèè. Ïî òåìïåðà-
òóðíîé è ÷àñòîòíîé çàâèñèìîñòè äèýëåêòðè÷åñêîé
ïðîíèöàåìîñòè ìîæíî ïîëó÷èòü èíôîðìàöèþ î
ìåõàíèçìàõ ïîëÿðèçàöèè è èõ îòíîñèòåëüíîì
âêëàäå â ïîëÿðèçàöèþ äèýëåêòðèêà. Âîçðàñòàíèå
äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ïðèâîäèò ê ðîñòó
ýëåêòðîïðîâîäíîñòè.
Öåëü ðàáîòû – îáîáùåíèå è ñèñòåìàòèçàöèÿ
ëèòåðàòóðíûõ äàííûõ íà îñíîâå ïîñòðîåíèÿ ýìïè-
ðè÷åñêèõ ôîðìóë äëÿ ðàñ÷åòà çíà÷åíèé ñòàòè÷åñ-
êîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ÷èñòûõ
êðèîïðîòåêòîðîâ, èõ âîäíûõ ðàñòâîðîâ è ñìåñåé â
çàâèñèìîñòè îò ìàññîâîé êîíöåíòðàöèè êðèîïðî-
òåêòîðà è òåìïåðàòóðû.
Ýêñïåðèìåíòàëüíûå ðåçóëüòàòû ïî ñòàòè÷åñêîé
äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè êðèîïðîòåêòîðîâ,
âîäíûõ ðàñòâîðîâ è ñìåñåé, ïðèâåäåííûå â ëèòå-
ðàòóðå, áûëè îáðàáîòàíû ñ ïîìîùüþ ïðîãðàììû
«Excel 2003» («Microsoft», ÑØÀ). Íàðÿäó ñ äàí-
íûìè äëÿ êðèîïðîòåêòîðîâ áûëè îáðàáîòàíû è
ýêñïåðèìåíòàëüíûå ëèòåðàòóðíûå äàííûå äëÿ
âîäû, ëüäà è ðÿäà ðàñòâîðîâ âåùåñòâ, êîòîðûå
âàæíû êàê äëÿ æèçíåäåÿòåëüíîñòè ÷åëîâåêà, òàê
è äëÿ êðèîáèîëîãèè.
 òàáëèöàõ êîíöåíòðàöèè ïðèâåäåíû â ìàññîâûõ
ïðîöåíòàõ äëÿ âåùåñòâà, óêàçàííîãî ïåðâûì.
 òàáëèöàõ ïðèíÿòû ñëåäóþùèå óñëîâíûå
îáîçíà÷åíèÿ:
ÁÄ – áóòàíäèîë,
ÁÑÀ – áû÷èé ñûâîðîòî÷íûé àëüáóìèí,
ÄÌÀö – äèìåòèëàöåòàìèä,
ÄÌÑÎ – äèìåòèëñóëüôîêñèä,
ÄÌÔÀ – äèìåòèëôîðìàìèä,
ÄÝÃ – äèýòèëåíãëèêîëü,
Ì – ìîëÿðíîñòü,
ÌÀö – ìåòèëàöåòàìèä,
ÌÔÀ – ìåòèëôîðìàìèä,
ÏÂÏ – ïîëèâèíèëïèððîëèäîí,
ÏÄ – ïðîïàíäèîë,
ÏÝÃ – ïîëèýòèëåíãëèêîëü,
ÒÝÃ – òðèýòèëåíãëèêîëü,
ÔÀ – ôîðìàìèä,
ÕÔ – õëîðîôîðì,
ÝÃ – ýòèëåíãëèêîëü,
æ. ô. – æèäêàÿ ôàçà,
òâ. ô. – òâåðäàÿ ôàçà.
îâòñåùåÂ
ecnatsbuS
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
Ѱ,ðóòàðåïìåò
erutarepmeT
Ѱ,egnar
êèí÷îòñÈ secnerefeR
.ô.æ,àäîÂ
.p.l,retaW
ε 217,9–= × 01 7– t3 777,8+ × 01 4– t2 –
99,78+t9204,0– 5999,0 073...04–
,71,51,11,01,2[
,73,63,52–32
46,45,34,04,93
,08,87,17,66–
]601,301,99,69
,71–51,9,7,3,2[
,23,13,92,82
,06,85,64,53
,77,57,66,16
,101,79,49,39
]401
)äåë(.ô.âò,àäîÂ
)eci(.p.s,retaW ε 8,2= × 01 3– t2 8,39+t6703,0– 5499,0 0...321– ,34,63,91,41[
]45 ]64,53,82,11,4[
ÄÁ-2,1
DB-2,1 ε 319,52+t6631,0–= 3699,0 05...5 ]63,2[ ]82,2[
ÄÁ-3,1
DB-3,1
ε 713,1–= × 01 6– t3 570,7+ × 01 4– t2 –
84,33+t3991,0– 9799,0 051...82– ]63,4,2[ ]601,82,2[
ÄÁ-4,1
DB-4,1 ε 590,4= × 01 4– t2 66,53+t3391,0– 3799,0 051...51 ]66,9,4,2[ ]601,96,16,2[
ÄÁ-3,2
DB-3,2 ε 153,2= × 01 4– t2 96,32+t4411,0– 2999,0 051...01 ]301,4[ ]601,101[
ÄÏ-2,1
DP-2,1
ε 951,2= × 01 8– t4 954,6– × 01 6– t3 +
638,9+ × 01 4– t2 0,43+t7102,0– 5699,0 051...09– ,62,52,61,6,2[
]29,98,43,92
,12,81,71,8,2[
]98,68,35,62
ÄÏ-3,1
DP-3,1
ε 875,2= × 01 6– t3 448,2+ × 01 4– t2 –
81,93+t4202,0– 8799,0 001...03– ]301,63[ ]101,82[
äèìàòåöÀ
edimatecA ε 942,2–= × 01 3– t2 79,55+t2133,0+ 4999,0 571...19 ]63,2[ ]82,2[
.ô.æ,íèðåöèëÃ
.p.l,lorecylG ε 431,5= × 01 4– t2 16,84+t3662,0– 3399,0 001...87–
,53,43,52,9,2[
,39,19,16,73
]301,69
,92,72,62,71,2[
,09,88,96,55
]101,49
.ô.âò,íèðåöèëÃ
.p.s,lorecylG
ε 12,7= × 01 4– t3 t5501,0+ 2 +
85,19+t702,5+ 7999,0 31–...35–
]61[ ]8[
ε 381,1= × 01 3– t3 t58130,0– 2 –
21,74+t83660,0– 0,1 71...31–
öÀÌÄ
cAMD ε 485,6= × 01 4– t2 3,44+t5942,0– 2199,0 061...51– ,35,73,63,5,2[
]301,19
,74,54,92,82,2[
]101,88
ÎÑÌÄ
OSMD
ε 669,2= × 01 6– t4 444,5– × 01 4– t3 +
725,3+ × 01 2– t2 45,85+t170,1– 399,0 07...01 ,39,73,53,62[
]301,001
,09,92,82,81[
]101,89
ÀÔÌÄ
AFMD
ε 627,1–= × 01 6– t3 400,8+ × 01 4– t2 –
21,24+t4112,0– 3599,0 541...06– ]301,63,9,5,2[ ,96,74,82,2[
]101
ÃÝÄ
GED ε 90,1= × 01 4– t2 40,63+t2402,0– 2499,0 001...02– ,07,04,63,5,2[
]29
,56,74,23,82,2[
]98
öÀÌ
cAM
ε 312,1–= × 01 5– t3 393,7+ × 01 3– t2 –
88,22+t698,1– 4999,0 002...52 ]65,63,62,2[ ]94,82,81,2[
ëîíàòåÌ
lonahteM
ε 879,3–= × 01 6– t3 540,1+ × 01 3– t2 –
93,73+t9032,0– 6499,0 041...011–
,52,32,9,5,3,2[
,93,83,63,72
,97,66,75,94
]301,08
,82,91,71,51,2[
,74,14,13,03
,67,96,16,05
]501,101,77
ÀÔÌ
AFM
ε 191,2= × 01 6– t3 826,7+ × 01 3– t2 –
2,122+t909,1– 199,0 08...04– ]301,73,63,5,2[ ,74,92,82,2[
]101
).ô.âò(0001-ÃÝÏ
).p.s(0001-GEP
ε 924,6= × 01 6– t3 594,6+ × 01 4– t2 +
845,4+t74140,0+ 7379,0 03...07– ]85[ ]15[
006-ÃÝÏ
006-GEP
ε 3,6–= × 01 5– t3 893,7+ × 01 3– t2 –
30,41+t9772,0– 3869,0 06...01 ]68,85[ ]38,15[
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
133
Òàáëèöà 1. Óðàâíåíèÿ äëÿ ðàñ÷åòà ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ÷èñòûõ âåùåñòâ
â çàâèñèìîñòè îò òåìïåðàòóðû; äèñïåðñèè àïïðîêñèìàöèé è äèàïàçîíû òåìïåðàòóð ïðèìåíåíèÿ óðàâíåíèé
Table 1. Equations to calculate static dielectric permeability for pure substances depending on temperature;
dispersions of approximations and temperature ranges of equation application
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
îâòñåùåÂ
ecnatsbuS
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
Ѱ,ðóòàðåïìåò
erutarepmeT
Ѱ,egnar
êèí÷îòñÈ secnerefeR
004-ÃÝÏ
004-GEP ε 351,4= × 01 4– t2 12,61+t1731,0– 1889,0 52...0 ]68[ ]38[
003-ÃÝÏ
003-GEP ε 683,5= × 01 4– t2 5,71+t231,0– 7189,0 52...0 ]49,68,26[ ]19,38,65[
002-ÃÝÏ
002-GEP ε 425,5= × 01 4– t2 97,32+t9361,0– 9479,0 52...4 ]49,68[ ]19,38[
ÃÝÒ
GET ε 372,4= × 01 4– t2 72,62+t9241,0– 5599,0 06...02– ]63,5,2[ ]74,82,2[
ëîíåÔ
lonehP ε 656,2= × 01 4– t2 83,51+t4301,0– 4599,0 061...4 ]93,63,2[ ]13,82,2[
äèìàìðîÔ
edimamroF ε 889,7= × 01 5– t2 4,911+t3434,0– 499,0 56...0 ]301,63,2[ ]101,82,2[
).ô.âò(ìðîôîðîëÕ
).p.s(mroforolhC ε 87,5= × 01 5– t2 813,3+t23410,0– 9869,0 07–...941– ]97,2[ ]67,2[
ìðîôîðîëÕ
mroforolhC ε 239,3= × 01 5– t2 291,5+t32910,0– 2499,0 081...07– ]97,66,93,52,2[ ]67,16,13,71,2[
ëîíàòÝ
lonahtE
ε 769,1= × 01 8– t4 143,4– × 01 6– t3 +
912,4+ × 01 4– t2 9,72+t2351,0– 5599,0 061...341–
,52,42,9,5,2[
,17,75,55,63
]301,49,97
,74,82,71,61,2[
,96,66,05,84
]101,19,67
ÃÝ
GE ε 646,4= × 01 4– t2 43,64+t3232,0– 5699,0 051...02–
,93,63,62,52,2[
,98,08,27,04
]001,39
,13,82,81,71,2[
,09,77,86,23
]89
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
àäîâ–ÄÏ-2,1
retaw–DP-2,1 52 ε 710,1–= × 01 3– Ñ2 +Ñ5473,0–
54,87+ 5999,0 001...0 ]301,92,62[ ]101,12,81[
àäîâ–ÄÁ-3,1
retaw–DB-3,1 52 ε 54,87+Ñ1794,0–= 9999,0 001...0 ]67,63,6,4[ ,37,35,82[
]601
lCaC 2 àäîâ-
lCaC 2 retaw- 52 ε 556,2–= × 01 3– Ñ3 Ñ861,0+ 2 –
54,87+Ñ815,3– 9999,0 43...0 ]1[ ]1[
àäîâ-lCK
retaw-lCK
51 ε Ñ2317,0= 2 41,28+Ñ9476,3– 99,0 2...0 ]1[ ]1[
02 ε 82,08+Ñ6416,1–= 1399,0 7...0 ]74[ ]93[
52 ε 54,87+Ñ2554,1–= 1099,0 41...0 ]15,1[ ]34,1[
53 ε 29,47+Ñ2957,1–= 6799,0 4...0 ]1[ ]1[
àäîâ-lCaN
retaw-lCaN
0 ε 327,6= × 01 2– Ñ2 99,78+Ñ576,3– 5799,0 52...0 ]101,1[ ]99,1[
5,1 ε 854,7= × 01 2– Ñ2 93,78+Ñ893,3– 9399,0 52...0 ]15,1[ ]34,1[
3 ε 759,6= × 01 2– Ñ2 97,68+Ñ267,2– 199,0 5...0 ]1[ ]1[
134 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
Ïðîäîëæåíèå òàáëèöû 1
Table 1. (Continued)
Òàáëèöà 2. Óðàâíåíèÿ äëÿ ðàñ÷åòà ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ðàñòâîðîâ êðèîïðîòåêòîðîâ
â çàâèñèìîñòè îò êîíöåíòðàöèè êðèîïðîòåêòîðîâ ïðè ôèêñèðîâàííîé òåìïåðàòóðå; äèñïåðñèè
àïïðîêñèìàöèé è äèàïàçîíû êîíöåíòðàöèé ïðèìåíåíèÿ óðàâíåíèé
Table 2. Equations to calculate static dielectric permeability for cryoprotective solutions depending on cryoprotectant
concentration at a fixed temperature; dispersions of approximations and temperature ranges of equation application
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
àäîâ-lCaN
retaw-lCaN
5 ε 251,3= × 01 2– Ñ2 0,68+Ñ986,2– 7999,0 42...0 ]84[ ]04[
01 ε 602,5= × 01 2– Ñ2 50,48+Ñ993,3– 4899,0 61...0 ]1[ ]1[
02 ε 651,3= × 01 2– Ñ2 82,08+Ñ33,2– 5799,0 42...0 ]95,84[ ]25,04[
52 ε 1,3= × 01 2– Ñ2 54,87+Ñ372,2– 2599,0 52...0 ,84,33,23,1[
]101
,04,52,42,1[
]99
03 ε 149,3= × 01 2– Ñ2 76,67+Ñ485,2– 1399,0 52...0 ]101,15,1[ ]99,34,1[
53 ε 500,4= × 01 2– Ñ2 29,47+Ñ222,2– 5899,0 42...0 ]84[ ]04[
04 ε 507,3= × 01 2– Ñ2 22,37+Ñ268,2– 8999,0 61...0 ]12,1[ ]31,1[
05 ε 430,8= × 01 2– Ñ2 29,96+Ñ750,3– 5599,0 11...0 ]101[ ]99[
íèðåöèëã-lCaN
lorecylg-lCaN 5,53- ε = – 942,1 × 01 3– Ñ3 – Ñ96060,0 2 –
– 17,85+Ñ181,1 5589,0 92...0 ]1[ ]1[
àäîâ-íèíàëÀ
retaw-eninalA
52 ε Ñ3211,0= 3 Ñ295,1– 2 +Ñ622,8+
54,87+ 0,1 9...0
]82[ ]02[
03 ε 518,2= × 01 2– Ñ3 – Ñ1333,0 2 +
76,67+Ñ456,3+ 4799,0 9...0
53 ε 481,2= × 01 2– Ñ3 Ñ2403,0– 2 +
29,47+Ñ348,3+ 9499,0 9...0
04 ε 397,6= × 01 2– Ñ3 Ñ810,1– 2 +
22,37+Ñ178,5+ 8789,0 9...0
àäîâ-ÀÑÁ
retaw-ASB 52 ε 705,4–= × 01 2– Ñ4 Ñ234,0+ 3 –
Ñ5,1– 2 54,87+Ñ263,1+ 9599,0 5...0 ]21[ ]4[
àäîâ-àçîòêàëàÃ
retaw-esotcalaG
5 ε 768,1–= × 01 3– Ñ2 0,68+Ñ3261,0– 799,0 81...0
]13,1[ ]32,1[
01 ε 859,1–= × 01 3– Ñ2 50,48+Ñ6351,0– 9499,0 81...0
51 ε 709,2–= × 01 3– Ñ2 41,28+Ñ9731,0– 299,0 81...0
02 ε 19,3–= × 01 3– Ñ2 82,08+Ñ7721,0– 8199,0 81...0
52 ε 218,5= × 01 4– Ñ2 54,87+Ñ391,0– 4499,0 06...0
03 ε 976,4= × 01 4– Ñ2 76,67+Ñ7502,0– 6699,0 06...0
53 ε 134,3–= × 01 3– Ñ2 29,47+Ñ2341,0– 2799,0 81...0
04 ε 121,4= × 01 4– Ñ2 22,37+Ñ8891,0– 4699,0 06...0
05 ε 404,1–= × 01 3– Ñ2 29,96+Ñ43880,0– 6799,0 06...0
öÀÌÄ-íèðåöèëÃ
cAMD-lorecylG
51 ε 42,7–= × 01 6– Ñ3 238,2+ × 01 4– Ñ2+
17,04+Ñ52080,0+ 8599,0 001...0
]19[ ]88[
03 ε 808,2–= × 01 6– Ñ3 533,5– × 01 4– Ñ2 +
14,73+Ñ2911,0+ 8799,0 001...0
54 ε 523,6= × 01 7– Ñ3 641,1– × 01 3– Ñ2 +
14,43+Ñ2451,0+ 5599,0 001...0
06 ε 523,2–= × 01 6– Ñ3 384,1– × 01 3– Ñ2 +
7,13+Ñ7271,0+ 9699,0 001...0
ÀÔÌÄ-íèðåöèëÃ
AFMD-lorecylG
51 ε 201,1–= × 01 5– Ñ3 573,1– × 01 4– Ñ2 +
21,93+Ñ7271,0+ 3199,0
001...0 ]19[ ]88[
03 ε 953,2–= × 01 6– Ñ3 544,1– × 01 3– Ñ2 +
54,63+Ñ2912,0+ 9399,0
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
135
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
ÀÔÌÄ-íèðåöèëÃ
AFMD-lorecylG
54 ε 376,1= × 01 6– Ñ3 319,1– × 01 3– Ñ2 +
70,43+Ñ2422,0 699,0
001...0 ]19[ ]88[
06 ε 954,8–= × 01 7– Ñ3 893,1– × 01 3– Ñ2
49,13+Ñ2391,0+ 7499,0
àäîâ-íèðåöèëÃ
retaw-lorecylG
5,91- ε 161,5–= × 01 3– Ñ2 +Ñ7371,0+
57,78 7899,0 001...58
]96[ ]46[3,51- ε 240,1= × 01 –2Ñ2 – +Ñ426,2
9,012 3599,0 001...58
5,7- ε 179,2= × 01 3– Ñ2 5,541+Ñ242,1– 6799,0 001...58
02 ε 699,1–= × 01 3– Ñ2 82,08+Ñ3781,0– 6699,0
001...0
]87,53,7[ ]57,95,72[
52 ε 59,1–= × 01 3– Ñ2 54,87+Ñ2181,0– 4499,0 ]69,58,48,87[ ,28,18,57[
]49
03 ε 451,1–= × 01 3– Ñ2 76,67+Ñ4042,0– 9899,0 ]301,14,73[ ]101,33,92[
53 ε 992,1–= × 01 3– Ñ2 29,47+Ñ9622,0– 4999,0 ]58,14[ ]28,33[
73 ε 261,8–= × 01 4– Ñ2 42,47+Ñ6682,0– 1999,0 ]22[ ]41[
04 ε 793,1–= × 01 3– Ñ2 22,37+Ñ7712,0– 2999,0 ]69,87[ ]49,57[
54 ε 984,1–= × 01 3– Ñ2 55,17+Ñ8202,0– 6799,0 ]19,58,14[ ]88,28,33[
06 ε 211,1–= × 01 3– Ñ2 77,66+Ñ9612,0– 6999,0 ]87[ ]57[
07 ε 403,4–= × 01 4– Ñ2 57,36+Ñ2372,0– 5899,0 ]22,2[ ]41,2[
08 ε 528,9–= × 01 4– Ñ2 88,06+Ñ8302,0– 4999,0 ]87[ ]57[
001 ε =– 549,8 × 01 –4Ñ2 – 15,55+Ñ4781,0 8999,0 ]87[ ]57[
àçîëàãåðò-íèðåöèëÃ
esolahert-lorecylG
32-
ε 150,3= × 01 6– Ñ5 60,3– × 01 4– Ñ4 +
Ñ62110,0+ 3 Ñ2581,0– 2 +
8,6+Ñ435,1+
3599,0 74...0
]31[ ]5[0
ε 369,1= × 01 6– Ñ5 710,2– × 01 4– Ñ4 +
708,7+ × 01 3– Ñ3 Ñ831,0– 2 +
624,7+Ñ603,1+
3599,0 74...0
42
ε 501,1= × 01 6– Ñ5 452,1– × 01 4– Ñ4 +
355,5+ × 01 3– Ñ3 Ñ1311,0– 2 +
15,7+Ñ462,1+
2499,0 74...0
ëîíàòý-íèðåöèëÃ
lonahte-lorecylG
02 ε 826,5= × 01 –4Ñ2 79,42+Ñ6211,0+ 5499,0
001...0
]53,7[ ]95,72[
52 ε 202,1= × 01 –3Ñ2 72,42+Ñ5160,0+ 9899,0 ]301,88[ ]101,58[
íèöèëà – %48,2
lCaN
-enicylG – %48.2
lCaN
52 ε 392,77+Ñ6912,3= 6999,0 02...0 ]33[ ]52[
íèöèëà – %6,5
lCaN
enicylG – %6.5
lCaN
52 ε 767,67+Ñ3161,3= 9999,0 02...0 ]33[ ]52[
-íèöèëà – %58,01
lCaN
enicylG – %58.01
lCaN
52 ε 398,47+Ñ3502,3= 6999,0 02...0 ]33[ ]52[
àäîâ-íèöèëÃ
retaw-enicylG
81 ε 20,18+Ñ3891,3= 4999,0 81...0
]1[ ]1[
02 ε 82,08+Ñ711,3= 0,1 8...0
136 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
àäîâ-íèöèëÃ
retaw-enicylG
52 ε 54,87+Ñ851,3= 8899,0 02...0 ]33,1[ ]52,1[
03 ε 76,67+Ñ3560,3= 0,1 8...0 ]1[ ]1[
04 ε 22,37+Ñ8099,2= 9999,0 8...0
05 ε 29,96+Ñ3559,2= 9999,0 8...0
àäîâ-àçîêþëÃ
retaw-esoculG
5 ε 518,6–= × 01 4– Ñ2 0,68+Ñ8062,0– 8899,0 81...0
]13[ ]32[01 ε 307,8–= × 01 4– Ñ2 50,48+Ñ3942,0– 4999,0 81...0
51 ε 808,1–= × 01 3– Ñ2 41,28+Ñ3722,0– 2999,0 81...0
02 ε 951,1–= × 01 4– Ñ3 757,8+ × 01 3– Ñ2 –
82,08+Ñ9373,0– 599,0 09...0 ]501,13,1[ ]301,32,1[
52 ε 886,1–= × 01 3– Ñ2 54,87+Ñ5612,0– 9999,0 05...0 ]13,1[ ]32,1[
03 ε 488,3–= × 01 5– Ñ3 287,1+ × 01 3– Ñ2 –
76,67+Ñ1172,0– 4699,0 09...0 ]1[ ]1[
53 ε 491,2–= × 01 3– Ñ2 29,47+Ñ2102,0– 6899,0 81...0 ]13[ ]32[
04 ε 406,5–= × 01 5– Ñ3 712,3+ × 01 3– Ñ2 –
22,37+Ñ5512,0– 1499,0 09...0
]1[ ]1[
05 ε 285,4–= × 01 5– Ñ3 194,2+ × 01 3– Ñ2 –
29,96+Ñ9791,0– 8499,0 09...0
06 ε 248,3–= × 01 5– Ñ3 249,1+ × 01 3– Ñ2 –
77,66+Ñ1971,0– 6799,0 09...0
07 ε 493,4–= × 01 5– Ñ3 199,2+ × 01 3– Ñ2 –
57,36+Ñ3712,0– 6599,0 59...0
08 ε 363,4–= × 01 5– Ñ3 984,3+ × 01 3– Ñ2 –
88,06+Ñ6142,0– 1599,0 59...0
09 ε 361,4–= × 01 5– Ñ3 818,3+ × 01 3– Ñ2 –
31,85+Ñ6562,0– 5399,0 59...0
àäîâ-öÀÌÄ
retaw-cAMD 52 ε 50,2–= × 01 3– Ñ2 54,87+Ñ8442,0– 6999,0 001...0 ]301,73,5[ ]101,74,92[
àäîâ-ÎÑÌÄ
retaw-OSMD
01 ε 845,7–= × 01 5– Ñ3 693,6+ × 01 3– Ñ2 –
50,48+Ñ8412,0– 2899,0
001...0
]001,71[ ]89,9[
02 ε 385,5–= × 01 5– Ñ3 132,3+ × 01 3– Ñ2 –
82,08+Ñ91890,0– 2999,0 ]53,81,71[ ]72,01,9[
52 ε 87,5–= × 01 5– Ñ3 428,3+ × 01 3– Ñ2 –
54,87+Ñ5201,0– 2799,0 ,47,06,54,73[
]79,78
,45,73,92[
]59,48,17
03 ε 101,5–= × 01 5– Ñ3 22,3+ × 01 3– Ñ2 –
76,67+Ñ4211,0– 3899,0 ]301,06,71[ ]101,45,9[
53 ε 178,5–= × 01 5– Ñ3 169,4+ × 01 3– Ñ2–
29,47+Ñ7791,0– 5799,0 ]301,06,81[ ]101,45,01[
04 ε 967,4–= × 01 5– Ñ3 942,3+ × 01 3– Ñ2 –
22,37+Ñ6321,0– 5699,0 ]301,06,71[ ]101,45,9[
54 ε 558,4–= × 01 5– Ñ3 457,3+ × 01 3– Ñ2 –
55,17+Ñ4841,0– 2899,0 ]301,06[ ]101,45[
ÃÝ-ÎÑÌÄ
GE-OSMD 01 ε 618,5–= × 01 7– Ñ4 817,8+ × 01 5– Ñ3 –
01x895,5 3– Ñ2 60,44+Ñ8633,0+ 5499,0 001...0 ]301,001[ ]101,89[
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
137
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
ÃÝ-ÎÑÌÄ
GE-OSMD
02 ε 268,8–= × 01 7– Ñ4 454,1+ × 01 4– Ñ3 –
381,9– × 01 3– Ñ2 88,14+Ñ6614,0+ 8399,0 001...0
]301,001[ ]101,89[
52 ε 630,1–= × 01 6– Ñ4 168,1+ × 01 4– Ñ3 –
372,1– × 01 2– Ñ2 28,04+Ñ8825,0+ 299,0 001...0
03 ε 983,1–= × 01 6– Ñ4 304,2+ × 01 4– Ñ3 –
784,1– × 01 2– Ñ2 97,93+Ñ5345,0+ 8599,0 001...0
04 ε 92,1–= × 01 6– Ñ4 522,2+ × 01 4– Ñ3 –
224,1– × 01 2– Ñ2 97,73+Ñ3765,0+ 2799,0 001...0
àäîâ-ÀÔÌÄ
retaw-AFMD
52 ε 506,1= × 01 6– Ñ3 290,3– × 01 3– Ñ2 –
– 54,87+Ñ3911,0 2999,0 001...0 ]301,73,1[ ]101,92,1[
03 ε 308,1= × 01 6– Ñ3 525,2– × 01 3– Ñ2 –
– 76,67+Ñ5461,0 999,0 001...0 ]301,39[ ]101,09[
íèðåöèëã-ÀÔÌÄ
lorecylg-AFMD 03 ε 372,6= × 01 6– Ñ3 606,2– × 01 3– Ñ2 +
80,14+Ñ8451,0+ 899,0 001...0 ]301,39[ ]101,09[
ÎÑÌÄ-ÀÔÌÄ
OSMD-AFMD 03 ε 120,4–= × 01 4– Ñ2 68,54+Ñ34150,0– 1799,0 001...0 ]301,39[ ]101,09[
ëîíàòåì-ÀÔÌÄ
lonahtem-AFMD
01 ε 560,1–= × 01 3– Ñ2 81,53+Ñ2951,0+ 699,0
001...0
]1[ ]1[
52 ε 200,3= × 01 4– Ñ2 12,23+Ñ53130,0+ 499,0
]301,94,2[ ]101,14,2[
03 ε 660,3= × 01 4– Ñ2 3,13+Ñ94030,0+ 3399,0
53 ε 349,3= × 01 4– Ñ2 24,03+Ñ94610,0+ 6799,0
04 ε 974,5= × 01 4– Ñ2 01x978,3– 3– 75,92+Ñ 3599,0
55 ε 420,1–= × 01 3– Ñ2 91,72+Ñ3851,0+ 2699,0 ]1[ ]1[
ÃÝ-ÀÔÌÄ
GE-AFMD 03 ε 230,2= × 01 6– Ñ3 964,1– × 01 3– Ñ2 +
97,93+Ñ49590,0+ 7899,0 001...0 ]301,39[ ]101,09[
ëîíàòý-ÀÔÌÄ
lonahte-AFMD 03 ε 723,2= × 01 4– Ñ2 85,32+Ñ4601,0+ 7899,0 001...0 ]301,39[ ]101,09[
àäîâ-ÃÝÄ
retaw-GED
51 ε 311,2–= × 01 3– Ñ2 41,28+Ñ4082,0– 6999,0 001...0 ]63,1[ ]82,1[
52 ε 799,1–= × 01 3– Ñ2 54,87+Ñ572,0– 1999,0 001...0 ]49,04,1[ ]19,23,1[
53 ε 567,1–= × 01 3– Ñ2 29,47+Ñ8772,0– 7999,0 001...0 ]2,1[ ]2,1[
ëîíàòý-ÃÝÄ
lonahte-GED 52 ε 96,4= × 01 5– Ñ2 72,42+Ñ42260,0+ 5699,0 001...0 ]301,49[ ]101,19[
àäîâ-àçîëèñK
retaw-esolyX
5 ε = – 0,68+Ñ703,0 4899,0
61...0 ]13[ ]32[
01 ε = – 50,48+Ñ8203,0 2999,0
51 ε = – 41,28+Ñ6003,0 1999,0
02 ε = – 82,08+Ñ6503,0 7599,0
52 ε = – 54,87+Ñ3,0 9599,0
03 ε = – 76,67+Ñ8603,0 1499,0
53 ε = – 29,47+Ñ3213,0 8199,0
04 ε = – 22,37+Ñ6023,0 4989,0
àäîâ-àçîòüëàÌ
retaw-esotlaM 5 ε 621,2–= × 01 3– Ñ2 0,68+Ñ6952,0– 7899,0 05...0 ]86[ ]36[
138 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
àäîâ-àçîòüëàÌ
retaw-esotlaM
51 ε 226,1–= × 01 3– Ñ2 41,28+Ñ2562,0– 2899,0
05...0 ]86[ ]36[52 ε 724,1–= × 01 3– Ñ2 54,87+Ñ5262,0– 3999,0
53 ε 421,1–= × 01 3– Ñ2 29,47+Ñ6562,0– 1999,0
àäîâ-òèííàÌ
retaw-lotinnaM
02 ε 236,1–= × 01 3– Ñ2 82,08+Ñ7321,0– 8899,0 51...0 ]1[ ]1[
52 ε 164,8–= × 01 3– Ñ2 788,6– × 01 3– 54,87+Ñ 2899,0 05...0 ]29,1[ ]98,1[
03 ε 553,9–= × 01 4– Ñ2 76,67+Ñ1331,0– 2899,0 02...0
]1[ ]1[
04 ε 546,6= × 01 4– Ñ2 22,37+Ñ7861,0– 7999,0 02...0
05 ε 852,2–= × 01 4– Ñ2 29,96+Ñ3451,0– 8999,0 02...0
06 ε 491,1= × 01 3– Ñ2 77,66+Ñ6081,0– 1999,0 02...0
àäîâ-öÀÌ
retaw-cAM
5 ε 83,1= × 01 –4Ñ3 – 28,9 × 01 –3Ñ2 +
0,68+Ñ393,0+ 3999,0 08...0
]62[ ]81[
01 ε 655,1= × 01 –4Ñ3 – 872,1 × 01 –2Ñ2 +
5,48+Ñ7974,0+ 1999,0 08...0
51 ε 376,1= × 01 4– Ñ3 325,1– × 01 2– Ñ2 +
41,28+Ñ8285,0+ 6999,0 08...0
02 ε 448,1= × 01 4– Ñ3 197,1– × 01 2– Ñ2 +
82,08+Ñ7666,0+ 6999,0 08...0
52 ε 952,4–= × 01 6– Ñ4 549,8+ × 01 4– Ñ3 –
– 616,5 × 01 –2Ñ2 54,87+Ñ243,1+ 6599,0 001...0
03 ε 258,2–= × 01 6– Ñ4 324,6+ × 01 4– Ñ3 –
332,4– × 01 2– Ñ2 76,67+Ñ111,1+ 5899,0 001...0
53 ε = – 200,3 × 01 –6Ñ4 382,7+ × 01 –4Ñ3 –
– 481,5 × 01 –2Ñ2 29,47+Ñ683,1+ 9999,0 001...0
04 ε 619,2–= × 01 6– Ñ4 227,7+ × 01 4– Ñ3 –
169,5– × 01 2– Ñ2 22,37+Ñ176,1+ 5999,0 001...0
54 ε 110,3–= × 01 6– Ñ4 644,8+ × 01 4– Ñ3 –
– 608,6 × 01 –2Ñ2 55,17+Ñ29,1+ 8699,0 001...0
àäîâ-ëîíàòåÌ
retaw-lonahteM
– 09 ε 129,8= × 01 3– Ñ2 9,391+Ñ361,2– 8589,0
001...45
]1[ ]1[
– 08 ε 638,7= × 01 3– Ñ2 8,971+Ñ959,1– 789,0
– 07 ε 807,6= × 01 3– Ñ2 9,661+Ñ757,1– 3989,0
– 06 ε 568,2= × 01 3– Ñ2 6,631+Ñ11,1– 9199,0
001...44
– 05 ε 188,2= × 01 3– Ñ2 5,031+Ñ80,1– 8199,0
– 04 ε 771,1–= × 01 3– Ñ2 75,501+Ñ4164,0– 8699,0
001...0
– 03 ε 119,9–= × 01 4– Ñ2 98,001+Ñ4164,0– 899,0
– 02 ε 527,7–= × 01 4– Ñ2 14,69+Ñ8664,0– 6299,0
– 01 ε 782,6–= × 01 4– Ñ2 11,29+Ñ7744,0– 5499,0
]3,1[ ]501,1[
0 ε 509,4–= × 01 4– Ñ2 99,78+Ñ3154,0– 6999,0
5 ε 896,6–= × 01 4– Ñ2 0,68+Ñ9324,0– 8999,0 ]47,75,32[ ]17,05,51[
01 ε 230,3–= × 01 4– Ñ2 50,48+Ñ554,0– 2999,0 ]1[ ]1[
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
139
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
àäîâ-ëîíàòåÌ
retaw-lonahteM
51 ε 437,4–= × 01 4– Ñ2 41,28+Ñ5524,0– 9999,0
001...0
]301,24,32,1[ ,43,51,1[
]101
71 ε = – 78,1 × 01 –4Ñ2 – 93,18+Ñ9364,0 7999,0 ]1[ ]1[
02 ε 320,2–= × 01 4– 82,08+Ñ1844,0–2Ñ 4799,0 ]301,17,24,1[ ,66,43,1[
]101
52 ε 105,1–= × 01 4– Ñ2 54,87+Ñ4144,0– 999,0
,24,14,32,1[
,201,78,25
]301
,43,33,51,1[
,001,48,44
]101
03 ε 811,2–= × 01 4– Ñ2 76,67+Ñ7624,0– 3899,0 ,89,24,14,1[
]301
,69,43,33,1[
]101
53 ε 136,2–= × 01 4– Ñ2 29,47+Ñ7314,0– 5899,0 ,24,14,32,1[
]301
,43,33,51,1[
]101
04 ε 152,8–= × 01 5– Ñ2 22,37+Ñ3524,0– 3999,0 ]301,14,1[ ]101,33,1[
54 ε 290,1–= × 01 4– Ñ2 55,17+Ñ7514,0– 5999,0 ]301,14,32[ ]101,33,51[
05 ε 710,1–= × 01 3– Ñ2 29,96+Ñ5773,0– 3799,0 ]301,03,1[ ]101,22,1[
55 ε 387,9= × 01 5– Ñ2 23,86+Ñ3914,0– 0,1 ]301,32[ ]101,51[
06 ε 27,4= × 01 4– Ñ2 77,66+Ñ5254,0– 4999,0 ]301,2,1[ ]101,2,1[
ÎÑÌÄ-ëîíàòåÌ
OSMD-lonahteM 02 ε 10,2= × 01 –5Ñ3 – 858,3 × 01 –3Ñ2 +
53,74+Ñ86240,0+ 2999,0 001...0 ]8[ ]76[
àäîâ-àíèâå÷îÌ
retaw-aerU
81 ε 885,3–= × 01 2– Ñ2 10,18+Ñ9622,0+ 9699,0 5,9...6,1 ]1[ ]1[
02 ε 278,1= × 01 3– Ñ2 82,08+Ñ9015,0+ 6999,0 84...0 ]76,1[ ]26,1[
52 ε 351,1= × 01 3– Ñ2 54,87+Ñ1235,0+ 0,1 82...0 ]64,1[ ]83,1[
àäîâ-ÀÔÌ
retaw-AFM 52 ε 894,2= × 01 6– Ñ4 680,3– × 01 4– Ñ3 +
404,1+ × 01 2– Ñ2 54,87+Ñ4841,0+ 6999,0 001...0 ]73[ ]92[
002-ÃÝÏ – àäîâ
002-GEP – retaw 52 ε = – 726,2 × 01 –3Ñ2 – 54,87+Ñ613,0 9899,0 001...0 ]49,29,35[ ]19,98,54[
003-ÃÝÏ – àäîâ
003-GEP – retaw 52 ε 297,2–= × 01 3– Ñ2 54,87+Ñ7823,0– 2699,0 001...0 ]49,26,35[ ]19,65,54[
004-ÃÝÏ – àäîâ
004-GEP – retaw 52 ε 487,2–= × 01 3– Ñ2 54,87+Ñ1463,0– 9699,0 001...0 ]49,26[ ]19,65[
006-ÃÝÏ – àäîâ
006-GEP – retaw 52 ε 339,1–= × 01 3– Ñ2 54,87+Ñ6854,0– 1899,0 001...0 ]49,26,35[ ]19,65,54[
002-ÃÝÏ – ëîíàòý
002-GEP – lonahte 52 ε 716,2–= × 01 4– Ñ2 72,42+Ñ50810,0– 9399,0 001...0 ]49[ ]19[
003-ÃÝÏ – ëîíàòý
003-GEP – lonahte 52 ε 240,3–= × 01 4– Ñ2 72,42+Ñ30040,0– 2699,0 001...0 ]49[ ]19[
004-ÃÝÏ – ëîíàòý
004-GEP – lonahte 52 ε 525,3–= × 01 4– Ñ2 72,42+Ñ6750,0– 8099,0 001...0 ]88[ ]58[
006-ÃÝÏ – ëîíàòý
006-GEP – lonahte 52 ε =– 604,4 × 01 –4Ñ2 – 72,42+Ñ38060,0 6699,0 001...0 ]49[ ]19[
àäîâ-àçîáèÐ
retaw-esobiR
5 ε 402,6–= × 01 3– Ñ2 0,68+Ñ1491,0– 9699,0
61...0 ]13[ ]32[01 ε 987,7–= × 01 3– Ñ2 50,48+Ñ4581,0– 7699,0
51 ε 710,1–= × 01 2– Ñ2 41,28+Ñ2381,0– 2699,0
140 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
àäîâ-àçîáèÐ
retaw-esobiR
02 ε 951,1–= × 01 2– Ñ2 82,08+Ñ4002,0– 6699,0
61...0 ]13[ ]32[
52 ε 522,1–= × 01 2– Ñ2 54,87+Ñ5822,0– 4499,0
03 ε = – 13,1 × 01 –2Ñ2 – 76,67+Ñ4882,0 4599,0
53 ε 960,1–= × 01 2– Ñ2 29,47+Ñ7224,0– 8699,0
04 ε 56,5–= × 01 3– Ñ2 22,37+Ñ4536,0– 6989,0
àäîâ-àçîðàõàÑ
retaw-esorcuS
01 ε 431,9–= × 01 4– Ñ2 50,48+Ñ7442,0– 0,1 04...0 ]1[ ]1[
02 ε 386,7–= × 01 5– Ñ3 413,4+ × 01 3– Ñ2 –
– 82,08+Ñ3803,0 6799,0 08...0 ]36,21,1[ ]75,4,1[
22 ε 932,1–= × 01 2– Ñ2 45,97+Ñ921,0– 9699,0 41...0 ]37[ ]07[
52 ε 664,1–= × 01 3– Ñ2 54,87+Ñ412,0– 4799,0 06...0
]36,21,1[ ]75,4,1[
03 ε 113,2–= × 01 3– Ñ2 76,67+Ñ8571,0– 7699,0 07...0
53 ε 295,2–= × 01 3– Ñ2 29,47+Ñ3802,0– 6199,0 52...0 ]11[ ]3[
04 ε 656,2–= × 01 3– Ñ2 22,37+Ñ4051,0– 8499,0 08...0 ]1[ ]1[
54 ε 407,4–= × 01 3– Ñ2 55,17+Ñ8941,0– 9699,0 52...0 ]11[ ]3[
05 ε 720,2–= × 01 3– Ñ2 29,96+Ñ4271,0– 799,0 08...0
]1[ ]1[
06 ε = – 473,3 × 01 –5Ñ3 486,1+ × 01 –3Ñ2 –
– 77,66+Ñ1352,0 599,0 09...0
07 ε 618,1–= × 01 5– Ñ3 831,5+ × 01 4– Ñ2 –
57,36+Ñ2932,0– 9599,0 09...0
08 ε = – 809,1 × 01 –5Ñ3 163,1+ × 01 –3Ñ2 –
– 88,06+Ñ5182,0 3599,0 09...0
09 ε 652,3–= × 01 5– Ñ3 690,3+ × 01 3– Ñ2 –
– 31,85+Ñ2013,0 6599,0 09...0
59 ε 996,1–= × 01 3– Ñ2 8,65+Ñ4231,0– 7999,0 09...0
001 ε 90,4–= × 01 4– Ñ2 15,55+Ñ9352,0– 7999,0 07...0
àäîâ-òèáðîÑ
retaw-lotibroS
0 ε 132,1= × 01 3– Ñ2 99,78+Ñ4114,0– 1789,0 07...0
]59[ ]29[
5 ε 7,1= × 01 –3Ñ2 – 0,68+Ñ7644,0 7789,0 07...0
01 ε 534,4= × 01 3– Ñ2 50,48+Ñ7416,0– 2499,0 07...0
51 ε =– 962,3 × 01 –4Ñ3 207,3+ × 01 –2Ñ2 –
– 41,28+Ñ493,1 7899,0 06...0
02 ε 201,3–= × 01 4– Ñ3 573,3+ × 01 2– Ñ2 –
– 82,08+Ñ352,1 1699,0 06...0
52 ε 700,4–= × 01 4– Ñ3 290,4+ × 01 2– Ñ2 –
– 54,87+Ñ493,1 4599,0 05...0
àäîâ-àçîëàãåðÒ
retaw-esolaherT
5 ε 118,1–= × 01 3– Ñ2 0,68+Ñ6022,0– 9899,0 05...0
]86[ ]36[
51 ε 773,1–= × 01 3– Ñ2 41,28+Ñ1412,0– 3999,0 05...0
52 ε 658,9–= × 01 4– Ñ2 54,87+Ñ2522,0– 1699,0 05...0
53 ε 206,7–= × 01 4– Ñ2 29,47+Ñ6132,0– 7599,0 05...0
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
141
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
àäîâ-ÃÝÒ
retaw-GET
51 ε 184,2–= × 01 3– Ñ2 41,28+Ñ7223,0– 999,0 001...0 ]1[ ]1[
52 ε 935,2–= × 01 3– Ñ2 54,87+Ñ7292,0– 5999,0 001...0 ]04,1[ ]23,1[
53 ε 323,2–= × 01 3– Ñ2 29,47+Ñ5292,0– 2999,0 001...0
]2,1[ ]2,1[
àäîâ-ëîíåÔ
retaw-lonehP 07 ε 345,1–= × 01 3– Ñ2 78,33+Ñ13490,0– 1999,0 001...04
ÀÔ – ÄÏ-2,1
AF – DP-2,1 03 ε 86,82+Ñ6087,0= 7999,0 001...0 ]29[ ]98[
àäîâ-ÀÔ
retaw-AF
52 ε 790,4–= × 01 5– Ñ3 555,3+ × 01 3– Ñ2 +
54,87+Ñ3663,0+ 6699,0 001...0 ]25,73,1[ ]44,92,1[
03 ε 446,5–= × 01 5– Ñ3 853,5+ × 01 3– Ñ2 +
76,67+Ñ5133,0+ 7899,0 001...0
]29[ ]98[
íèðåöèëã-ÀÔ
lorecylg-AF 03 ε 825,2–= × 01 3– Ñ2 +Ñ9119,0+ 80,14 3999,0 001...0
ÃÝÄ-ÀÔ
GED-AF 03 ε 799,1–= × 01 3– Ñ2 99,93+Ñ9968,0+ 4999,0 001...0
ÎÑÌÄ-ÀÔ
OSMD-AF 03 ε 721,1= × 01 3– Ñ2 68,54+Ñ3994,0+ 6999,0 001...0
ÀÔÌÄ-ÀÔ
AFMD-AF 03 ε 78,1= × 01 3– Ñ2 54,63+Ñ1715,0+ 7999,0 001...0 ]29,09[ ]98,78[
ëîíàòåì-ÀÔ
lonahtem-AF 03 ε 509,1= × 01 3– Ñ2 3,13+Ñ9175,0+ 5999,0 001...0
]29[ ]98[
ÀÔ – 002-ÃÝÏ
AF – 002-GEP 03 ε 73,91+Ñ7178,0= 5999,0 001...0
ÀÔ – 003-ÃÝÏ
AF – 003-GEP 03 ε 20,41+Ñ7819,0= 999,0 001...0
ÀÔ – 004-ÃÝÏ
AF – 004-GEP 03 ε 951,8= × 01 4– Ñ2 74,21+Ñ8458,0+ 1999,0 001...0
ÀÔ – 006-ÃÝÏ
AF – 006-GEP 03 ε 853,7= × 01 4– Ñ2 56,01+Ñ3088,0+ 3999,0 001...0
ëîíàòý-ÀÔ
lonahte-AF 03 ε 468,4= × 01 3– Ñ2 85,32+Ñ4943,0+ 8999,0 001...0
ÃÝ-ÀÔ
GE-AF 03 ε 827,1–= × 01 3– Ñ2 97,93+Ñ4548,0+ 7999,0 001...0
àäîâ-àçîòêóðÔ
retaw-esotcurF
5 ε 740,1–= × 01 3– Ñ2 0,68+Ñ1542,0– 7999,0 81...0
]13[ ]32[
01 ε 282,1–= × 01 3– Ñ2 50,48+Ñ8622,0– 8999,0 81...0
51 ε 594,1–= × 01 3– Ñ2 41,28+Ñ6712,0– 6999,0 81...0
02 ε 500,1–= × 01 3– Ñ2 82,08+Ñ2912,0– 8899,0 81...0
52 ε 942,1–= × 01 3– Ñ2 54,87+Ñ9602,0– 2999,0 81...0
03 ε 565,1–= × 01 3– Ñ2 76,67+Ñ6991,0– 7999,0 81...0
53 ε 556,1–= × 01 3– Ñ2 29,47+Ñ881,0– 1999,0 81...0
04 ε 267,1–= × 01 3– Ñ2 22,37+Ñ7481,0– 1599,0 02...0 ]13,21[ ]32,4[
ëîíàòåì-ÔÕ
lonahtem-FC 02 ε 619,1–= × 01 3– Ñ2 61,33+Ñ40290,0– 6999,0 001...0 ]1[ ]1[
142 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
,àðóòàðåïìåÒ
Ѱ
,erutarepmeT
Ѱ
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
,éèöàðòíåöíîê
%.ññàì
noitartnecnoC
w/w%,egnar
êèí÷îòñÈ secnerefeR
ëîíàòý-ÔÕ
lonahte-FC
81 ε 690,1–= × 01 3– Ñ2 62,52+Ñ58590,0– 5799,0
001...0
]1[ ]1[52 ε 970,1–= × 01 3– Ñ2 72,42+Ñ19780,0– 899,0
àäîâ-ëîíàòÝ
retaw-lonahtE
5- ε 307,1= × 01 4– Ñ2 30,09+Ñ8236,0– 5799,0
0 ε 313,2= × 01 4– Ñ2 99,78+Ñ4826,0– 1899,0 ]301,11,1[ ]101,3,1[
5 ε 415,3–= × 01 4– Ñ2 0,68+Ñ1316,0– 8899,0 ]42[ ]61[
01 ε 842,7= × 01 4– Ñ2 50,48+Ñ4946,0– 2499,0 ]301,11,1[ ]101,3,1[
51 ε 561,2= × 01 4– Ñ2 41,28+Ñ3706,0– 3599,0 ]301,42,11[ ]101,61,3[
02 ε 247,6= × 01 4– Ñ2 82,08+Ñ326,0– 5699,0 ,55,24,7,1[
]301,17
,95,84,43,1[
]101,66
22 ε 479,4= × 01 4– Ñ2 65,97+Ñ2506,0– 9999,0 ]37[ ]07[
52 ε 315,7= × 01 4– Ñ2 54,87+Ñ7026,0– 2899,0
,24,42,11,1[
,88,78,25,44
]301,401
,43,61,3,1[
,58,48,44,63
]201,101
03 ε 25,7= × 01 4– Ñ2 76,67+Ñ6016,0– 999,0 ]301,89,1[ ]101,69,1[
23 ε 583,5= × 01 –4Ñ2 – 69,57+Ñ2775,0 8999,0 ]301,55[ ]101,84[
53 ε 22,7= × 01 4– Ñ2 29,47+Ñ5106,0– 799,0 ]301,42,11,1[ ]101,61,3,1[
04 ε 794,8= × 01 4– Ñ2 22,37+Ñ6106,0– 3899,0 ]301,24,11,1[ ]101,43,3,1[
54 ε 765,9= × 01 4– Ñ2 55,17+Ñ2906,0– 7299,0 ]301,11,1[ ]101,3,1[
05 ε 86,9= × 01 4– Ñ2 29,96+Ñ5595,0– 2899,0 ]301,03,42,1[ ,22,61,1[
]101
55 ε 350,1= × 01 3– Ñ2 23,86+Ñ3195,0– 2999,0
]301,1[ ]101,1[06 ε 307,9= × 01 –4Ñ2 – 77,66+Ñ5275,0 1999,0
57 ε 20,1= × 01 –3Ñ2 – 3,26+Ñ9155,0 3999,0
08 ε 758,8= × 01 4– Ñ2 88,06+Ñ635,0– 5999,0 ]301,101,1[ ]101,99,1[
àäîâ-ÃÝ
retaw-GE
51 ε 579,1–= × 01 3– Ñ2 41,28+Ñ5881,0– 3799,0 ]04,1[ ]23,1[
02 ε 498,1–= × 01 3– Ñ2 82,08+Ñ4222,0– 5599,0 ,101,77,07[
]601
,99,47,56[
]401
52 ε 918,1–= × 01 3– Ñ2 54,87+Ñ502,0– 5399,0 ,27,04,02,1[
]601,49,08
,86,23,21,1[
]401,19,77
03 ε 707,1–= × 01 3– Ñ2 76,67+Ñ6122,0– 5799,0 ]08[ ]77[
53 ε 244,1–= × 01 3– Ñ2 29,47+Ñ4712,0– 6499,0 ]08,04,1[ ]77,23,1[
04 ε 226,1–= × 01 3– Ñ2 22,37+Ñ9122,0– 1799,0 ,08,77,07[
]601
,77,47,56[
]401
54 ε 604,1–= × 01 3– Ñ2 55,17+Ñ7032,0– 9999,0 ]08[ ]77[
05 ε 276,7–= × 01 4– Ñ2 29,96+Ñ2272,0– 2699,0 ]03[ ]22[
06 ε 211,1–= × 01 3– Ñ2 77,66+Ñ7832,0– 8899,0 ,101,77,07[
]601
,99,47,56[
]401
08 ε 879,7–= × 01 4– Ñ2 88,06+Ñ9142,0– 5999,0 ]601,77,07[ ]401,47,56[
001 ε 724,5–= × 01 4– Ñ2 15,55+Ñ5342,0– 5999,0 ]601,101,77,07[ ]401,99,47,56[
ëîíàòý-ÃÝ
lonahte-GE 52 ε 816,7= × 01 4– Ñ2 72,42+Ñ61290,0+ 9799,0 ]49[ ]19[
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
143
Ïðîäîëæåíèå òàáëèöû 2
Table 2. (Continued)
ðîâòñàÐ
noituloS
ÿèöàðòíåöíîK ,
%.ññàì
noitartnecnoC ,
w/w%
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
Ѱ,ðóòàðåïìåò
erutarepmeT
Ѱ,egnar
êèí÷îòñÈ secnerefeR
àäîâ-lCaN
retaw-lCaN
5,0 ε 91,4–= × 01 3– t2 89,97+t55030,0– 6699,0 06...01
]38[ ]08[
1 ε 50,5–= × 01 3– t2 63,77+t47630,0– 5799,0 06...01
5,1 ε 587,4–= × 01 3– t2 01x648,7– 3– 66,67+t 499,0 06...01
2 ε 273,1–= × 01 3– t2 87,67+t3651,0– 2899,0 05...01
48,2 ε 341,5–= × 01 4– t2 75,97+t4113,0– 6699,0 06...0 ]1[ ]1[
37,3 ε 753,1–= × 01 3– t2 91,97+t7653,0– 6599,0 04...0 ]15[ ]34[
üëåã-ðàãà–lCaN
)%1(
legraga–lCaN
)%1(
0 ε 907,3= × 01 4– t2 45,97+t9142,0– 3799,0 06...01
]38[ ]08[
5,0 ε 184,1–= × 01 3– t2 34,77+t6631,0– 6599,0 06...01
1 ε 398,6= × 01 4– t2 54,67+t3652,0– 3799,0 06...01
5,1 ε 917,7= × 01 4– t2 44,57+t942,0– 3199,0 06...01
2 ε 483,1= × 01 3– t2 89,37+t8372,0– 3999,0 06...01
íèðåöèëã-lCaN
lorecylg-lCaN
55,4 ε 920,1= × 01 2– t2 5,85+t105,0+ 0,1 72–...94–
]1[ ]1[
51,12 ε 363,6= × 01 3– t2 93,94+t8692,0– 8699,0 22–...05–
éûâîíèöèëã–lCaN
)Ì2,0(ðåôóá
enicylg–lCaN
)M2.0(reffub
0 ε 818,1= × 01 5– t4 01x428,3– 3– t3 +
t1392,0+ 2 7,591+t31,01– 6799,0 07...02 ]57[ ]27[
5,0 ε 333,2= × 01 3– t3 t42,0– 2 +
37,43+t122,6+ 0,1 05...02 ]57[ ]27[
éûíòàôñîô–lCaN
)Ì50,0(ðåôóá
etahpsohp–lCaN
)M50.0(reffub
0 ε 873,6–= × 01 4– t2 17,38+Ñ7681,0– 9299,0 56...7
]18[ ]87[
5,0 ε 200,1–= × 01 3– t2 90,18+Ñ3431,0– 1399,0 56...7
57,0 ε 940,1–= × 01 3– t2 15,18+Ñ1061,0– 9199,0 56...7
1 ε 121,1–= × 01 3– t2 51,18+Ñ2651,0– 2299,0 56...7
àäîâ-àçîòêàëàÃ
retaw-esotcalaG
84,3 ε 342,78+t6363,0–= 8999,0 04...5
]13[ ]32[
27,6 ε 175,68+t663,0–= 8999,0 04...5
57,9 ε 390,68+t2073,0–= 8999,0 04...5
6,21 ε 524,58+t7663,0–= 9999,0 04...5
72,51 ε 399,48+t2093,0–= 9999,0 04...5
87,71 ε 925,48+t973,0–= 9999,0 04...5
àäîâ-íèöèëÃ
retaw-enicylG 33,7 ε 746,9–= × 01 4– t2 8,901+t6123,0– 899,0 05...0 ]1[ ]1[
àäîâ-àçîêþëÃ
retaw-esoculG
84,3 ε 638,68+t5063,0–= 9999,0
04...5 ]13[ ]32[
27,6 ε 348,58+t6353,0–= 7999,0
57,9 ε 0,58+t7153,0–= 9999,0
6,21 ε = – 343,48+t6353,0 7999,0
72,51 ε = – 575,38+t53,0 7999,0
144 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
Òàáëèöà 3. Óðàâíåíèÿ äëÿ ðàñ÷åòà ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ðàñòâîðîâ êðèîïðîòåêòîðîâ
â çàâèñèìîñòè îò òåìïåðàòóðû ïðè ôèêñèðîâàííîé êîíöåíòðàöèè; äèñïåðñèè àïïðîêñèìàöèé è äèàïàçîíû
êîíöåíòðàöèé ïðèìåíåíèÿ óðàâíåíèé
Table 3. Equations to calculate static dielectric permeability for cryoprotective solutions depending on temperature at
a fixed concentration; dispersions of approximations and temperature ranges of equation application
Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå
Continued on next page
ðîâòñàÐ
noituloS
ÿèöàðòíåöíîK ,
%.ññàì
noitartnecnoC ,
w/w%
åèíåíâàðÓ
noitauqE R2
íîçàïàèÄ
Ѱ,ðóòàðåïìåò
erutarepmeT
Ѱ,egnar
êèí÷îòñÈ secnerefeR
àäîâ-àçîêþëÃ
retaw-esoculG 87,71 ε = – 986,28+t9243,0 5999,0 04...5 ]13[ ]32[
àäîâ-ÎÑÌÄ
retaw-OSMD 04 ε = – 336,38+t5483,0 7999,0 53...5 ]47[ ]17[
àäîâ-ÀÔÌÄ
retaw-AFMD 55,92 ε = – 65,07+t92,0 7999,0 04...02 ]81[ ]01[
àäîâ-öÀÌ
retaw-cAM
37,14 ε 516,8= × 01 –4t2 – 64,79+t7833,0 5199,0
54...5 ]62[ ]81[94,75 ε 9,3= × 01 –3t2 – 6,401+t285,0 999,0
32,08 ε 108,3= × 01 3– t2 5,921+t4168,0– 8999,0
àäîâ-ëîíàòåÌ
retaw-lonahteM
43 ε 584,2= × 01 3– t2 20,76+t3923,0– 6889,0 – 81...22 ]02[ ]21[
05 ε 887,5= × 01 4– t2 18,46+t4653,0– 3099,0 53...5 ]47,14,1[ ]17,33,1[
-ðàãà–àçîðàõàÑ
)%1(üëåã
legraga–esorcuS
)%1(
01 ε 202,2= × 01 5– t3 452,3– × 01 –3t2 +
01x696,1 2– 41,17+t 9399,0
06...01 ]38[ ]08[
02 ε 392,2= × 01 –4t3 – 864,2 × 01 –2t2 +
75,45+t7347,0 3079,0
03 ε 244,1–= × 01 –4t3 200,1+ × 01 –2t2 –
229,2 × 01 2– 18,35+t 8769,0
04 ε 899,1= × 01 –4t3 – 791,2 × 01 –2t2 +
24,52+t409,0 6699,0
àäîâ-àçîðàõàÑ
retaw-esorcuS
5 ε 187,9= × 01 –4t2 – 15,68+t2224,0 8999,0
001...0
]38,1[ ]08,1[
01 ε 988,7= × 01 –4t2 – 83,58+t9504,0 9899,0
02 ε 338,6= × 01 –4t2 – 54,28+t1193,0 6699,0
03 ε 311,5= × 01 –4t2 – 23,97+t4863,0 1799,0 – 001...2
04 ε 153,5= × 01 –4t2 – 54,67+t2563,0 1999,0 – 001...3
àäîâ-ÀÔ
retaw-AF 14,33 ε = – 8,301+t873,0 7999,0 04...02 ]81[ ]01[
àäîâ-ëîíàòÝ
retaw-lonahtE
59 ε 899,2= × 01 3– t2 4,83+t50840,0+ 8999,0 – ...651 – 011
]05[ ]24[
99 ε 554,5= × 01 3– t2 43,48+t6877,0+ 3799,0 – ...261 – 911
àäîâ-ÃÝ
retaw-GE
02 ε 394,9= × 01 4– t2 39,28+t3024,0– 1999,0 – 001...01
,28,08,07[
]601
,97,77,56[
]401
03 ε 181,9= × 01 4– t2 7,97+t6114,0– 4999,0 – 001...01
04 ε 727,6= × 01 4– t2 23,47+t4933,0– 6899,0 – 001...02 ]601,08[ ]401,77[
05 ε 250,1= × 01 3– t2 9,27+t6114,0– 6999,0 – 001...02 ,08,77,07[
]601,28
,77,47,56[
]401,97
06 ε 555,9= × 01 4– t2 0,86+t7873,0– 9799,0 – 001...04
]601,08[ ]401,77[
08 ε 32,1= × 01 3– t2 64,55+t2103,0– 3599,0 – 001...51
Ïðîäîëæåíèå òàáëèöû 3
Table 3. (Continued)
Ëèòåðàòóðà
1. Àõàäîâ ß.Þ. Äèýëåêòðè÷åñêèå ñâîéñòâà áèíàðíûõ ðàñò-
âîðîâ. – Ì.: Íàóêà, 1977. – 400 ñ.
2. Àõàäîâ ß.Þ. Äèýëåêòðè÷åñêèå ñâîéñòâà ÷èñòûõ æèäêîñ-
òåé. – Ì.: Èçä–âî ñòàíäàðòîâ, 1972. – 412 ñ.
References
1. Akhadov Y.Y. Dielectric Properties of Binary Solutions. Moscow:
Nauka; 1977.
2. Akhadov Y.Y. Dielectric Properties of pure liquids. Moscow:
Izdatelstvo standartov; 1972.
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
145
3. Æóðàâëåâ À.Â., Ñóñëÿåâ Â.È., Òàðàñåíêî Ï.Ô. Âûáîð ìîäå-
ëè äèýëåêòðè÷åñêîé ðåëàêñàöèè âåùåñòâà äëÿ èçìåðåí-
íûõ ñïåêòðîâ ñìåñè ìåòèëîâîãî ñïèðòà è âîäû íà îñíî-
âå ïðîâåðêè ãèïîòåç // Èçâåñòèÿ âûñøèõ ó÷åáíûõ
çàâåäåíèé. Ôèçèêà. – 2010. – Ò. 53, ¹9/3. – Ñ. 279–280.
4. Æóðàâëåâ Â.È., Óñà÷åâà Ò.Ì. Ðàâíîâåñíûå äèýëåêòðè-
÷åñêèå ñâîéñòâà áóòàíäèîëîâ // Âåñòíèê Ìîñêîâñêîãî
óíèâåðñèòåòà. Ñåðèÿ: Õèìèÿ. – 2010. – Ò. 51, ¹4. – Ñ. 274–
278.
5. Êàðàïåòÿí Þ.À., Ýé÷èñ Â.Ì. Ôèçèêî-õèìè÷åñêèå ñâîéñòâà
ýëåêòðîëèòíûõ íåâîäíûõ ðàñòâîðîâ. – Ì.: Õèìèÿ, 1989. –
256 ñ.
6. Ëèôàíîâà Í.Â., Óñà÷åâà Ò.Ì., Áàõèëèíà Í.Â. è äð. Äèýëåêò-
ðè÷åñêèå ñâîéñòâà ñèñòåìû 1,2-ïðîïàíäèîë – áåíçîë //
Âåñòíèê Ìîñêîâñêîãî óíèâåðñèòåòà. Ñåðèÿ: Õèìèÿ. –
1998. – Ò. 39, ¹1. – Ñ. 33–36.
7. Ìàðêîâñêèé Þ.Å., Çîðè À.À. Ïðèìåíåíèå ðàäèî÷àñòîòíîãî
ìåòîäà äëÿ àíàëèçà êîìïîíåíòíîãî ñîñòàâà æèäêèõ ñìå-
ñåé è âîäíûõ ðàñòâîðîâ îðãàíè÷åñêèõ äèýëåêòðèêîâ //
Íàóê. ïðàö³ ÄîíÍÒÓ. – 2010. – Âèï. 171. – Ñ. 212–217.
8. Ìîñêàëåö À.Ï. Ðàçðàáîòêà ìîäåëåé íàäìîëåêóëÿðíîé
îðãàíèçàöèè è ôèçèêî-õèìè÷åñêèõ ñâîéñòâ æèäêèõ ðàñò-
âîðîâ: Àâòîðåô. äèñ. … êàíä. ôèç.-ìàò. íàóê. – Ìîñêâà,
2010. – 29 ñ.
9. Ñïðàâî÷íèê õèìèêà. Ò. 1. / Ïîä. ðåä. Á.Ï. Íèêîëüñêîãî. –
Ì. – Ë.: Õèìèÿ, 1966. – 1072 ñ.
10.Ñòàòè÷åñêàÿ äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü âîäû è
âîäÿíîãî ïàðà â ñîñòîÿíèè íàñûùåíèÿ [Ýëåêòðîííûé
äîêóìåíò] // [âåá-ñàéò] http://twt.mpei.ac.ru/tthb/2/OIVT/
HB_v201/GLAVA3/Table3_6.pdf (11.06.2014).
11.Akode C.G., Kanse K.S., Lokhande M.P. et al. Dielectric relaxa-
tion studies of aqueous sucrose in ethanol mixtures using
time domain reflectometry // Pramana – J. Phys. – 2004. –
Vol. 62, ¹4. – P. 973–981.
12. Alshami A.S. Dielectric properties of biological materials: a
physical-chemical approach: A dissertation … PhD. – Washing-
ton, 2007. – 173 p.
13.Anopchenko A., Psurek T., VanderHart D. et al. Dielectric study
of the antiplasticization of trehalose by glycerol // Phys. Rev. –
2006. – Vol. 74, ¹ 3, Pt. 1 – P. 031501–1–031501–10.
15.Archer D.G., Wang P. The dielectric constant of water and
Debye-Hañkel limiting law stopes // J. Phys. Chem. Ref. Data,
1990. – Vol. 19, ¹2. – P. 371–411.
16.Baudot A., Bret J.L. A simple capacitive cell for the measure-
ment of liquids dielectric constant under transient thermal con-
ditions // CryoLetters. – 2003. – Vol. 24, ¹1. – P. 5–16.
17.Bhat J.I., Manjunatha M.N. Studies on the effect of dielectric
constant on the solvation behaviour of citric acid as a function
of temperature // Arch. Appl. Sci. Res. – 2011. – Vol. 3, ¹5. –
P. 362–380.
18.Bhatti N.K. Heterogeneous electron transfer rate constants
of some substituted bipyridinium halides: A dissertation …
PhD. – Islamabad, 2002. – 250 p.
19.Bittelli M., Flury M., Roth K. Use of dielectric spectroscopy to
estimate ice content in frozen porous media // Water Resour.
Res. – 2004. – Vol. 40, ¹4. – P. 1–11.
20.Bolund B.F., Berglund M., Bernhoff H. Dielectric study of water-
methanol mixtures for use in pulsed-power water capacitors //
J. Appl. Phys. – 2003. – Vol. 93, ¹5. – P. 2895–2899.
21.Bordi F., Cametti C. Colby R.H. Dielectric spectroscopy and
conductivity of polyelectrolyte solutions // J. Phys. Condens.
Matter. – 2004. – Vol. 16, ¹49. – P. R1423–R1463.
22.Brennan T.V., Clarke S. Spontaneous degradation of polypepti-
des at aspartyl and asparaginyl residues: Effects of the solvent
dielectric // Protein Sci. – 1993. – Vol. 2, ¹3. – P. 331–338.
23.Bruno T.J., Svoronov P.D.N Handbook of basic tables for che-
mical analysis. – Boca Raton: CRC Press, 2010. – 887 p.
24. Buck D.E. The dielectric spectra of ethanol-water mixtures in
the microwave region: A dissertation … PhD. – Massachu-
setts, 1965. – 71 p.
25.Buckley F., Maryott A.A. Tables of dielectric dispersion data
for pure liquids and dilute solutions // US Department of com-
146 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
3. Akode C.G., Kanse K.S., Lokhande M.P. et al. Dielectric relaxa-
tion studies of aqueous sucrose in ethanol mixtures using time
domain reflectometry. Pramana J Phys 2004; 62(4): 973–981.
4. Alshami A.S. Dielectric properties of biological materials: a
physical-chemical approach [dissertation]. Washington state
university, 2007.
5. Anopchenko A., Psurek T., VanderHart D. et al. Dielectric study
of the antiplasticization of trehalose by glycerol. Phys Rev
2006; 74(3, Pt.1): 1–10.
6. Aragones J.L., MacDowell L.G., Vega C. Dielectric constant of
ices and water: a lesson about water interactions. J Phys
Chem. A. 2011; 115(23): 5745–5758.
7. Archer D.G., Wang P. The dielectric constant of water and
Debye-Hañkel limiting law stopes. J Phys Chem Ref Data 1990;
19(2): 371–411.
8. Baudot A., Bret J.L. A simple capacitive cell for the measurement
of liquids dielectric constant under transient thermal conditions.
CryoLetters 2003; 24(1): 5–16.
9. Bhat J.I., Manjunatha M.N. Studies on the effect of dielectric
constant on the solvation behaviour of citric acid as a function
of temperature. Arch Appl Sci Res 2011; 3(5): 362–380.
10.Bhatti N.K. Heterogeneous electron transfer rate constants
of some substituted bipyridinium halides [dissertation].
Islamabad, 2002.
11.Bittelli M., Flury M., Roth K. Use of dielectric spectroscopy to
estimate ice content in frozen porous media. Water Resour
Res 2004; 40(4): 1–11.
12.Bolund B.F., Berglund M., Bernhoff H. Dielectric study of water-
methanol mixtures for use in pulsed-power water capacitors.
J Appl Phys 2003; 93(5): 2895–2899.
13.Bordi F., Cametti C. Colby R.H. Dielectric spectroscopy and
conductivity of polyelectrolyte solutions. J Phys Condens Matter
2004; 16(49): R1423–R1463.
14.Brennan T.V., Clarke S. Spontaneous degradation of polypep-
tides at aspartyl and asparaginyl residues: Effects of the
solvent dielectric. Protein Sci 1993; 2(3): 331–338.
15.Bruno T.J., Svoronov P.D.N Handbook of basic tables for
chemical analysis. Boca Raton: CRC Press; 2010.
16.Buck D.E. The dielectric spectra of ethanol-water mixtures in
the microwave region [dissertation]. Massachusetts Institute
of Technology, 1965.
17.Buckley F., Maryott A.A. Tables of dielectric dispersion data
for pure liquids and dilute solutions. US Department of
commerce. National Bureau of Standart. Circular 589. Available
from: www.boulder.nist.gov/div838/SelectedPubs/NBS%20
Circular%20589.pdf] [cited 5.06.2014].
18.Butler R.A. Electrolyte behavior in solvents of high dielectric
constant [dissertation]. University of Florida, 1978.
19.Caleman C., van Maaren P.J., Hong M. et al. Force field
benchmark of organic liquids: density, enthalpy of vaporization,
heat capacities, surface tension, isothermal compressibility,
volumetric expansion coefficient, and dielectric constant.
J Chem Theory Comput 2012; 8(1): 61–74.
20.Chaudhari H.C., Chaudhari A., Mehrotra S.C. Dielectric study
of aqueous solutions of alanine and phenylalanine. J Chin
Chem Soc 2005; 52(1): 5–10.
21.Chavan S., Kumbharkhane A., Mehrotra S. Microwave dielect-
ric behaviour of 1,2-propanediol – water mixture studied using
time domain reflectometry technique. J Chin Chem Soc 2007;
54(6): 1457–1462.
22.Chen H.-I., Chang H.-Y. Homogeneous precipitation of cerium
dioxide nanoparticles in alcohol/water mixed solvents. Colloids
and Surfaces A: Physicochem Eng Aspects 2004; 242(1–3):
61–69.
23.Chen Y.-J., Zhuo K.-L., Kang L. Dielectric constants for binary
saccharide-water solutions at 278.15–313.15 K. Acta Phys
Chim Sin 2008; 24(1): 91–96.
24.Chitra R., Smith P.E. Molecular dynamics simulations of the
properties of cosolvent solutions. J Phys Chem 2000; 104(24):
5854–5864.
25.Cohn E.J., McMeekin T.L., Blanchard M.H. Studies in the physi-
cal chemistry of amino acids, peptides, and related substan-
merce. National Bureau of Standart. Circular 589 [Ýëåêòðîí-
íûé äîêóìåíò] // [âåá-ñàéò] www.boulder.nist.gov/div838/
SelectedPubs/NBS%20Circular%20589.pdf (5.06.2014).
26.Butler R.A. Electrolyte behavior in solvents of high dielectric cons-
tant: A dissertation…PhD. University of Florida. – 1978. – 124 p.
27.Caleman C., van Maaren P.J., Hong M. et al. Force field bench-
mark of organic liquids: density, enthalpy of vaporization, heat
capacities, surface tension, isothermal compressibility, volu-
metric expansion coefficient, and dielectric constant // J. Chem.
Theory Comput. – 2012. – Vol. 8, ¹1. – P. 61–74.
28.Chaudhari H.C., Chaudhari A., Mehrotra S.C. Dielectric study
of aqueous solutions of alanine and phenylalanine // J. Chin.
Chem. Soc. – 2005. – Vol. 52, ¹1. – P. 5–10.
29.Chavan S., Kumbharkhane A., Mehrotra S. Microwave dielect-
ric behaviour of 1,2-propanediol-water mixture studied using
time domain reflectometry technique // J. Chin. Chem. Soc. –
2007. – Vol. 54, ¹6. – P. 1457–1462.
30.Chen H.-I., Chang H.-Y. Homogeneous precipitation of cerium
dioxide nanoparticles in alcohol/water mixed solvents // Colloids
and Surfaces A: Physicochem. Eng. Aspects. – 2004. –
Vol. 242, ¹1–3. – P. 61–69.
31.Chen Y.-J., Zhuo K.-L., Kang L. Dielectric constants for binary
saccharide-water solutions at 278.15–313.15 K // Acta Phys.
Chim. Sin. – 2008. – Vol. 24, ¹1. – P. 91–96.
32.Chitra R., Smith P.E. Molecular dynamics simulations of the
properties of cosolvent solutions // J. Phys. Chem. – 2000. –
Vol. 104, ¹24. – P. 5854–5864.
33. Cohn E.J., McMeekin T.L., Blanchard M.H. Studies in the
physical chemistry of amino acids, peptides, and related sub-
stances. XI. The solubility of cystine in the presence of ions
and another dipolar ion // J. Gen. Physiol. – 1938. – Vol. 21,
¹5. – P. 651–663.
34.Cole R.H., Davidson D.W. Dielectric properties of trimethylene
glycol // Brown university, ONR Contract Nonr–562( 03 ), NR–
051–284, 1953. – P. 28–36.
35.Common organic solvents: table of properties [Ýëåêòðîííûé
äîêóìåíò] // [âåá-ñàéò] www.wuestgroup.com/Solvent%20
Properties.pdf (16.04.2014).
36.CRC Handbook of chemistry and physics. – Boca Raton: CRC
Press, 2005. – 2661 p.
37. Daneshvari D. Investigation of binary polar solvent mixtures,
solubilized ferroelectric salts and Paraffin–based derivatives
using dielectric spectroscopy: A dissertation … PhD. – Basel,
2007. – 294 p.
38.Davidson D.W. The dielectric properties of methanol and
methanol-d // Can. J. Chem. – 1957. – Vol. 35, ¹5. – P. 458–473.
39.Dielectric constant of common materials [Ýëåêòðîííûé
äîêóìåíò] // [âåá-ñàéò] www.flowmeterdirectory.com/
dielectric_constant_01.html (16.07.2014).
40.Douheret G., Morenas M. Thermodynamic and physical beha-
viour of some water + polyethyleneglycol mixtures. II. Dielectric
properties // Can. J. Chem. – 1979. – Vol. 57, ¹6. – P. 608–613.
41.Emara M.M., Shehata H.A., Elnhaily S. Thermodynamics of
ion-association of NaClO4 in aqueous-methanol and aqueous-
glycerol using conductance measurement // J. Chin. Chem.
Soc. – 1988. – Vol. 35, ¹ 5. – P. 337–344.
42.Experimental aspects [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò]
http://prr.hec.gov.pk/chapters/346S-3.pdf (28.06.2014).
43.Fabbri A., Fen-Chong T., Coussy O. Dielectric capacity, liquid
water content, and pore structure of thawing-freezing mate-
rials // Cold Reg. Sci. Technol. – 2006. – Vol. 44, ¹1. – P. 52–66.
44.Faraji M., Farajtabar A., Gharib F. Determination of water-
ethanol mixtures autoprotolysis constants and solvent effect //
J. Appl. Chem. Res. – 2009. – Vol 9, ¹1. – P. 7–12.
45.Farjtabar A. Application of electrochemistry to determination
of transfer gibbs energies and autoprotolysis constants for
aqueous mixtures of dimethyl sulfoxide // J. Appl. Chem. Res. –
2012. – Vol. 20, ¹1. – P. 28–35.
46.Feng Y., Yu Z.-W., Quinn P.J. Effect of urea, dimethylurea, and
tetramethylurea on the phase behavior of dioleoylphosphatidyl-
ethanolamine // Chem. Phys. Lipids. – 2002. – Vol. 114, ¹2. –
P. 149–157.
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
147
ces. XI. The solubility of cystine in the presence of ions and
another dipolar ion. J. Gen. Physiol. 1938; 21(5): 651–663.
26.Cole R.H., Davidson D.W. Dielectric properties of trimethylene
glycol. Brown university, ONR Contract Nonr-562( 03 ), NR-
051–284, 1953. p. 28–36.
27.Common organic solvents: table of properties Available from:
www.wuestgroup.com/Solvent%20Properties.pdf [cited
16.04.2014].
28.CRC Handbook of chemistry and physics. Boca Raton: CRC
Press, 2005.
29.Daneshvari D. Investigation of binary polar solvent mixtures,
solubilized ferroelectric salts and Paraffin-based derivatives
using dielectric spectroscopy [dissertation]. Basel, 2007.
30.Davidson D.W. The dielectric properties of methanol and
methanol-d. Can J Chem 1957; 35(5): 458–73.
31.Dielectric constant of common materials Available from:
www.flowmeterdirectory.com/dielectric_constant_01.html
[cited 16.07.2014].
32.Douheret G., Morenas M. Thermodynamic and physical beha-
viour of some water + polyethyleneglycol mixtures. II. Dielectric
properties. Can J Chem 1979; 57(6): 608–613.
33.Emara M.M., Shehata H.A., Elnhaily S. Thermodynamics of
ion-association of NaClO4 in aqueous-methanol and aqueous-
glycerol using conductance measurement. J Chin Chem Soc
1988; 35(5): 337–344.
34.Experimental aspects Available from: http://prr.hec.gov.pk/
chapters/346S-3.pdf (accessed on 28.06.2014).
35.Fabbri A., Fen-Chong T., Coussy O. Dielectric capacity, liquid
water content, and pore structure of thawing-freezing mate-
rials. Cold Reg Sci Technol 2006; 44(1): 52–66.
36.Faraji M., Farajtabar A., Gharib F. Determination of water-
ethanol mixtures autoprotolysis constants and solvent effect.
J Appl Chem Res 2009; 9(1): 7–12.
37.Farjtabar A. Application of electrochemistry to determination
of transfer gibbs energies and autoprotolysis constants for
aqueous mixtures of dimethyl sulfoxide. J Appl Chem Res
2012; 20(1): 28–35.
38.Feng Y., Yu Z.-W., Quinn P.J. Effect of urea, dimethylurea, and
tetramethylurea on the phase behavior of dioleoylphosphatidyl-
ethanolamine. Chem Phys Lipids 2002; 114(2): 149–157.
39.Gaiduk V.I., TseitlinB.M., Vij J.K. Orientational/translational
relaxation in aqueous electrolyte solutions : a molecular model
for microwave/far-infrared ranges. Phys Chem Chem Phys
2001; 3(4): 523–534.
40.Gavish N., Promislow K. Dependence of the dielectric constant
of electrolyte solutions on ionic concentration Available from:
http://arxiv.org/pdf/1208.5169v1.pdf [cited 29.06.2014].
41.Gomaa E.A., Al-Jahdali B.A.M. Electrochemical studies on the
interaction of cadmium ion with kryptofix 22 in MeOH-DMF
solutions at different temperatures. Sci Technol 2012; 2(4):
66–76.
42.Hassion F.X., Cole R.H. Dielectric properties of liquid ethanol
and 2-propanol. Brown university, ONR Contract Nonr-562(03),
NR-051-284: p. 1–27.
43.Hasted J.B., Ritson D.M., Collie C.H. Dielectric properties of aque-
ous ionic solutions. Parts I and II. J Chem Phys 1948; 16(1): 1–21.
44.Hernandez-Luis F., Galleguillos-Castro H., Esteso M.A. Activity
coefficients of NaF in aqueous mixtures with ε-increasing co-
solvent: formamide-water mixtures at 298.15K. Fluid Phase
Equilibr 2005; 227(2): 245–253.
45.Hernandez-Perni M.E. A Contribution to the understanding of per-
colation phenomena in binary liquids [dissertation]. Basel, 2004.
46.Hobbs M.E., Jhon M.S., Eyring H. The dielectric constant of
liquid water and various forms of ice according to significant
structure theory. PNAS 1966; 56(1): 31–38.
47.Karapetyan Y.A., Eychis V. Physical-chemical properties of
the electrolyte non-aqueous solutions. Moscow: Khimia; 1989.
48. Khalil M.I., Al-Resayes S.I. The role of dielectric constant in
sodium chloride solution chemistry: Magnitude of super
saturation. Int J Phys Sci 2012; 7(4): 578–583.
49.Knecht L.A. N-methylacetamide: purification and tests for
purity. Pure Appl Chem 1971; 27(1–2): 281–290.
47.Gaiduk V.I., TseitlinB.M., Vij J.K. Orientational/translational rela-
xation in aqueous electrolyte solutions : a molecular model for
microwave/far-infrared ranges // Phys. Chem. Chem. Phys. –
2001. – Vol. 3, ¹4. – P. 523–534.
48.Gavish N., Promislow K. Dependence of the dielectric constant
of electrolyte solutions on ionic concentration [Ýëåêòðîííûé
äîêóìåíò] // [âåá-ñàéò] http://arxiv.org/pdf/1208.5169v1.pdf
(29.06.2014).
49.Gomaa E.A., Al-Jahdali B.A.M. Electrochemical studies on the
interaction of cadmium ion with kryptofix 22 in meoh-dmf solu-
tions at different temperatures // Sci. Technol. – 2012. – Vol. 2,
¹4. – P. 66–76.
50.Hassion F.X., Cole R.H. Dielectric properties of liquid ethanol
and 2-propanol // Brown university, ONR contract nonr-
562(03), NR–051. – 284. – P. 1–27.
51.Hasted J.B., Ritson D.M., Collie C.H. Dielectric properties of
aqueous ionic solutions. Parts I and II // J. Chem. Phys. –
1948. – Vol. 16, ¹1. – P. 1–21.
52.Hernandez-Luis F., Galleguillos-Castro H., Esteso M.A. Activity
coefficients of NaF in aqueous mixtures with ε-increasing co-
solvent: formamide-water mixtures at 298.15K // Fluid Phase
Equilibr. – 2005. – Vol. 227, ¹2. – P. 245–253.
53.Hernandez-Perni M.E. A Contribution to the understanding of
percolation phenomena in binary liquids: A dissertation … PhD. –
Basel, 2004. – 193 p.
54.Hobbs M.E., Jhon M.S., Eyring H. The dielectric constant of
liquid water and various forms of ice according to significant
structure theory // PNAS. – 1966. – Vol. 56, ¹1. – P. 31–38.
55.Khalil M.I., Al-Resayes S.I. The role of dielectric constant in
sodium chloride solution chemistry: Magnitude of super satu-
ration // Int. J. Phys. Sci. – 2012. – Vol. 7, ¹4. – P. 578–583.
56.Knecht L.A. N-methylacetamide: purification and tests for
purity // Pure Appl. Chem. – 1971. – Vol. 27, ¹1–2. – P. 281–290.
57.Koizumi N., Hanai T. Dielectric constants of some alcohols at
low frequencies // B. Inst. Chem. Res. – 1955. – Vol. 33, ¹1.–
P. 14–20.
58.Koizumi N., Hanai T. Dielectric properties of polyethylene gly-
cols: dielectric relaxation in solid state // B. Inst. Phys. Res. –
1964. – Vol. 42, ¹2–3. – P. 115–127.
59.Lee J.M., Jhon M.S., Eyring H. Significant structure theory
applied to electrolyte solution // PNAS. – 1979. – Vol. 76, ¹11. –
P. 5421–5423.
60.Lu Z., Manias E., Macdonald D.D. et al. Dielectric relaxation in
dimethyl sulfoxide/water mixtures studied by microwave di-
electric relaxation spectroscopy // J. Phys. Chem. A. – 2009. –
Vol. 113, ¹44. – P. 12207–12214.
61.Macdonald J.R. Analysis of dielectric and conductive dispersion
above Tg in glass-forming molecular liquids // J. Phys. Chem.
B. – 2008. – Vol. 112, ¹44. – P. 13684–13694.
62.Mali C.S., Chavan S.D., Kanse K.S. et al. Dielectric relaxation
of poly ethylene glycol – water mixtures using time domain
technique // Indian J. Pure Appl. Phys. – 2007. – Vol. 45, ¹5. –
P. 476–481.
63.Malmberg C.G., Maryott A.A. Dielectric constants of aqueous
solutions of dextrose and sucrose // J. Res. Natl. Inst. Stan. –
1950. – Vol. 45, ¹4. – P. 299–303.
64.Malmberg C.G., Maryott A.A. Dielectric constant of water from
0 to 100°C // J. Res. Natl. Inst. Stan. – 1956. – Vol. 56, ¹1. –
P. 1–8.
65.Marshall W.L. Dielectric constant of water discovered to be
simple function of density over extreme ranges from –35 to
+600°C and to 1200 MPa (12000 Atm.), Believed Universal
[Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] [http://precedings.
nature.com/documents/2478/version/1/files/npre20082472-
1.pdf] (22.05.2014).
66.Maryott A.A., Smith E.R. Table of dielectric constants of pure
liquids // United States department of commerce, National bureau
of standards. Circular 514 [Ýëåêòðîííûé äîêóìåíò] // [âåá-
ñàéò] [www.boulder.nist.gov/div838/SelectedPubs/NBS%20
Circular%20514.pdf] (19.05.2014).
67.Mason W.A., Shutt W.J. The dielectric capacity of electrolytes
in mixed solvents: ion association in solutions of magnesium
148 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
50.Koizumi N., Hanai T. Dielectric constants of some alcohols at
low frequencies. Bull Inst Chem Res 1955; 33(1): 14–20.
51.Koizumi N., Hanai T. Dielectric properties of polyethylene
glycols: dielectric relaxation in solid state. Bull Inst Phys Res
1964; 42(2–3): 115–127.
52.Lee J.M., Jhon M.S., Eyring H. Significant structure theory
applied to electrolyte solution. PNAS 1979; 76(11): 5421–5423.
53.Lifanova N.V., Usacheva T.M., Bakhilina N.V. et al. Dielectric
properties of the propane-1,2-diol-benzene system. Vestnik
Moskovskogo universiteta. Khimia. 1998; 39(1): 33–36
54.Lu Z., Manias E., Macdonald D.D. et al. Dielectric relaxation in
dimethyl sulfoxide/water mixtures studied by microwave di-
electric relaxation spectroscopy. J Phys Chem A 2009; 113(44):
12207–12214.
55.Macdonald J.R. Analysis of dielectric and conductive dispersion
above tg in glass-forming molecular liquids. J Phys Chem B
2008; 112(44): 13684–13694.
56.Mali C.S., Chavan S.D., Kanse K.S. et al. Dielectric relaxation
of poly ethylene glycol – water mixtures using time domain
technique. Indian J. Pure Appl. Phys. 2007; 45(5): 476–481.
57.Malmberg C.G., Maryott A.A. Dielectric constants of aqueous
solutions of dextrose and sucrose. J Res Natl Inst Stan 1950;
45(4): 299–303.
58.Malmberg C.G., Maryott A.A. Dielectric constant of water from
0 to 100C. J. Res. Natl. Inst. Stan. 1956; 56(1): 1–8.
59.Markovskyy Y.E., Zori A.A. Use of RF-method for the analysis
of component composition of solutions and mixtures of liquid
organic dielectrics. Scientific Papers of Donetsk National
Technical University. 2010; (171): 212–217
60. Marshall W.L. Dielectric constant of water discovered to be
simple function of density over extreme ranges from - 35 to +
6000C and to 1200 MPa (12000 Atm.), Believed Universal
Available from: http://precedings.nature.com/documents/2478/
version/1/files/npre20082472–1.pdf [cited 22.05.2014].
61.Maryott A.A., Smith E.R. Table of dielectric constants of pure
liquids // United States department of commerce, National bureau
of standards. Circular 514 Available from: www.boulder.nist.
gov/div838/SelectedPubs/NBS%20Circular%20514.pdf [cited
19.05.2014].
62.Mason W.A., Shutt W.J. The dielectric capacity of electrolytes
in mixed solvents: ion association in solutions of magnesium
sulphate. Proc R Soc Lond A 1940; 175(961): 234–253.
63.Matsuoka T., Okada T., Murai K. et al. Dynamics and hydration
of trehalose and maltose in concentrated solution. J Mol Liq
2002; 98–99: 317–327.
64.McDuffie G.E., Quinn R.G., Litovitz T.A. Dielectric properties of
glycerol-water mixtures. J Chem Phys 1962; 37(2): 239–242.
65.MEGlobal. Ethylene. Available from: www.meglobal.biz/
products-literature [cited 9.06.2014].
66.Mohsen-Nia M., Amiri H. Measurement and modelling of static
dielectric constants of aqueous solutions of methanol, ethanol
and acetic acid at T=293.15 K and 91.3 kPa. J Chem
Thermodynamics 2013; 57: 67–70.
67.Moscalets A.P. Development of models of supramolecular
organization and physico-chemical properties of liquid solutions
[dissertation]. Moscow; 2010.
68.Nagarajan R., Wang C.-C. Theory of surfactant aggregation in
water/ethylene glycol mixed solvents. Langmuir 2000; 16(12):
5242–5251.
69.Nikolsky B.P. editor. Handbook of chemist. Vol. 1. Moscow-
Leningrad: Khimia; 1966.
70.Olmi R., Meriakr V.V., Ignesti A. et al. Dielectric spectroscopy
of sugar and ethanol solutions in water for monitoring alcoholic
fermentation processes. J Microwave Power E E 2007; 41(3):
38–50.
71.O'Reilly N.J., Magner E. Electrochemistry of cytochrome c in
aqueous and mixed solvent solutions: thermodynamics,
kinetics, and the effect of solvent dielectric constant. Langmuir
2005; 21(3): 1009–1014.
72.Orellana L. Immobilized enzymes: time temperature indicators
for dielectric pasteurization processes [dissertation]. Wa-
shington State University, 2004.
sulphate // Proc. R. Soc. Lond. A. – 1940. – Vol. 175, ¹961. –
P. 234–253.
68.Matsuoka T., Okada T., Murai K. et al. Dynamics and hydration
of trehalose and maltose in concentrated solution // J. Mol.
Liq. – 2002. – Vol. 98–99. – P. 317–327.
69.McDuffie G.E., Quinn R.G., Litovitz T.A. Dielectric properties
of glycerol-water mixtures // J. Chem. Phys. – 1962. – Vol. 37,
¹2. – P. 239–242.
70.MEGlobal. Ethylene [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò]
[www.meglobal.biz/products-literature] (9.06.2014).
71.Mohsen-Nia M., Amiri H. Measurement and modelling of static
dielectric constants of aqueous solutions of methanol, ethanol
and acetic acid at T=293.15 K and 91.3 kPa // J. Chem. Ther-
modynamics. – 2013. – Vol. 57. – P. 67–70.
72.Nagarajan R., Wang C.-C. Theory of surfactant aggregation in
water/ethylene glycol mixed solvents // Langmuir. – 2000. –
Vol. 16, ¹12. – P. 5242–5251.
73.Olmi R., Meriakr V.V., Ignesti A. et al. Dielectric spectroscopy
of sugar and ethanol solutions in water for monitoring alcoholic
fermentation processes // J. Microwave Power E. E. – 2007. –
Vol. 41, ¹3. – P. 38–50.
74.O'Reilly N.J., Magner E. Electrochemistry of cytochrome c in
aqueous and mixed solvent solutions: thermodynamics, kine-
tics, and the effect of solvent dielectric constant // Langmuir. –
2005. – Vol. 21, ¹3. – P. 1009–1014.
75. Orellana L. Immobilized enzymes: time temperature indicators
for dielectric pasteurization processes: A dissertation … PhD.
Washington State University. – 2004. – 207 p.
76.Pathak R.N., Saxena I., Mishra A. et al. Study of the influence
of alkyl chain cation – solvent interactions on water structure
in 1,3-butanediol – water mixture by apparent molar volume
data // J. Chem. – 2011. – Vol. 8, ¹ 3. – P. 1323–1329.
77.Pelagic meg/water umbilical flushing and storage fluids
[Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] [www.subseafluids.
com/pdfs/Umbilical_Storage_fluids/Pelagic_MEG.Water/
Pelagic_ MEG–Water_Manual.pdf] (7.06.2014).
78.Physical properties of glycerine and its solutions. ACI Science.
American Cleaning Institute [Ýëåêòðîííûé äîêóìåíò] // [âåá-
ñàéò] [www.aciscience.org/does/Physical_properties_of_
glycerine_and_its–solutions.pdf] (17.05.2014).
79.Pure component properties [Electronic document] // [web-site]
[www.ddbst.com/en/EED/PCP/PCPindex.php] (1.07.2014).
80.Rao N.S.S.V.R. Studies on solute-solvent interactions in ionic
liquid systems: A dissertation … PhD. – Visakhapatnam, 2013. –
282 p.
81.Raviyan P., Tang J., Orellana L. et al. Physicochemical proper-
ties of a time-temperature indicator based on immobilization of
aspergillus oryzae – amylase in polyacrylamide gel as affected
by degree of cross-linking agent and salt content // J. Food
Sci. – 2003. – Vol. 68, ¹7. – P. 2302–2308.
82.Roy R.N., Baker G.E., Hoffman T., Breithaupt E.L., Roy L.N.
Standard electrode potentials of silver-silver chloride elect-
rodes in 20, 30, and 50% (w/w) ethylene glycol/water from
250C to –200C pK2 and pH* values of the physiological buffer
"BES" in 50 % (w/w) ethylene glycol/water // CryoLetters. –
1988. – Vol. 9, ¹ 3. – P. 172–185.
83.Sakai N., Mao W., Koshima Y. et al. A method for developing
model food system in microwave heating studies // J. Food
Eng. – 2005. – Vol. 66, ¹4. – P. 525–531.
84.Saleh J.M., Khalil M., Hokmat N.A. Investigation of some physical
properties of glycerol– water mixtures at 298.15 K // J. Iraqi
Chem. Soc. – 1986. – Vol. 11, ¹1. – P. 89–104.
85.Sarkar B.K., Roy M.N., Sinha B. Conductance studies on some
alkali metal acetates in aqueous glycerol solutions // Indian J.
Chem. – 2009. – Vol. 48A, ¹ 1. – P. 63–68.
86.Sarode A.V., Kumbharkhane A.C. Chain length effect on di-
electric relaxation and thermo-physical behaviour of organic
polymers through relaxation dynamics using TDR // Int. J. Basic
Appl. Res. – 2012. – Special volume. – P. 220–225.
87.Schwer C., Kenndler E. Electrophoresis in fused-silica capil-
laries: the influence of organic solvents on the electroosmotic
ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
149
73.Pathak R.N., Saxena I., Mishra A. et al. Study of the influence
of alkyl chain cation-solvent interactions on water structure
in 1,3-butanediol-water mixture by apparent molar volume
data. J Chem 2011; 8(3): 1323–1329.
74.Pelagic meg/water umbilical flushing and storage fluids
Available from: www.subseafluids.com/pdfs/Umbilical_
Storage_fluids/Pelagic_MEG.Water/Pelagic_MEG-Water_
Manual.pdf [cited 7.06.2014].
75.Physical properties of glycerine and its solutions. ACI Science.
American Cleaning Institute. Available from: www.aciscience.
org/does/Physical_propert ies_of_glycer ine_and_its-
solutions.pdf] [cited 17.05.2014].
76.Pure component properties. Available from: [www.ddbst.com/
en/EED/PCP/PCPindex.php] [cited 1.07.2014].
77.Rao N.S.S.V.R. Studies on solute-solvent interactions in ionic
liquid systems [dissertation]. Visakhapatnam, 2013.
78.Raviyan P., Tang J., Orellana L. et al. Physicochemical
properties of a time-temperature indicator based on immo-
bilization of aspergillus oryzae-amylase in polyacrylamide gel
as affected by degree of cross-linking agent and salt content.
J Food Sci 2003; 68(7): 2302–2308.
79.Roy R.N., Baker G.E., Hoffman T., Breithaupt E.L., Roy L.N.
Standard electrode potentials of silver-silver chloride elect-
rodes in 20, 30, and 50 % (w/w) ethylene glycol/water from
250C to -200C pK2 and pH* values of the physiological buffer
"BES" in 50 % (w/w) ethylene glycol/water. CryoLetters 1988;
9(3): 172–185.
80.Sakai N., Mao W., Koshima Y. et al. A method for developing
model food system in microwave heating studies. J Food Eng
2005; 66(4): 525–531.
81. Saleh J.M., Khalil M., Hokmat N.A. Investigation of some
physical properties of glycerol- water mixtures at 298.15 K.
J Iraqi Chem Soc 1986; 11(1): 89–104.
82.Sarkar B.K., Roy M.N., Sinha B. Conductance studies on some
alkali metal acetates in aqueous glycerol solutions. Indian J
Chem 2009; 48A(1): 63–68.
83.Sarode A.V., Kumbharkhane A.C. Chain length effect on
dielectric relaxation and thermo-physical behaviour of organic
polymers through relaxation dynamics using TDR. Int J Basic
Appl Res 2012; Special volume: 220–225.
84.Schwer C., Kenndler E. Electrophoresis in fused-silica capil-
laries: the influence of organic solvents on the electroosmotic
velocity and the potential. Anal Chem 1991; 63(17): 1801–
1807.
85.Seedher N., Bhatia S. Solubility enhancement of cox-2 inhibitors
using various solvent systems. AAPS Pharm Sci Tech 2003;
4(3): 1–9.
86.Sengwa R.J. A compararive dielectric study of ethylene glycol
and propylene glycol at different temperatures. J Mol Liq 2003;
108(1–3): 47–60.
87.Sengwa R.J., Choudhary S., Khatri V. Microwave dielectric spec-
tra and molecular relaxation in formamide-N,N-dimethylformamide
binary mixtures. Spectrochim Acta A 2011; 82(1): 279–282.
88.Sengwa R.J., Khatri V., Choudhary S. Temperature dependent
static dielectric constant and viscosity behaviour of glycerol-
amide binary mixtures: Characterization of dominant complex
structures in dielectric polarization and viscous flow proces-
ses. J Mol Liq 2010; 154(2–3): 117–123.
89.Sengwa R.J., Khatri V., Sankhla S. Dielectric behaviour and
hydrogen bond molecular interaction study of formamide-dipo-
lar solvents binary mixtures. J. Mol. Liq. 2009; 144(1–2): 89–96.
90.Sengwa R.J., Khatri V., Sankhla S. Structure and hydrogen
bonding in binary mixtures of N,N-dimethylformamide with some
dipolar aprotic and protic solvents by dielectric characteriza-
tion. Ind. J. Chem. 2009; 48A(4) 512–519.
91.Sengwa R.J., Sankhla S. Characterization of heterogeneous
interaction in binary mixtures of ethylene glycol oligomer with
water, ethyl alcohol and dioxane by dielectric analysis. J Mol
Liq 2007; 130(1–3): 119–131.
92.Shirgire S.D., Talware R.B., Kadam S.S. et al. Dielectric rela-
xation of d-sorbitol-water mixtures using a Time Domain Ref-
lectometry Technique. J Mol Liq 2012; 169: 33–36.
velocity and the potential // Anal. Chem. – 1991. – Vol. 63,
¹17. – P. 1801–1807.
88.Seedher N., Bhatia S. Solubility enhancement of cox-2 inhibitors
using various solvent systems // AAPS Pharm. Sci. Tech. –
2003. – Vol. 4, ¹ 3. – P. 1–9.
89.Sengwa R.J. A compararive dielectric study of ethylene glycol
and propylene glycol at different temperatures // J. Mol. Liq. –
2003. – Vol. 108, ¹1–3. – P. 47–60.
90.Sengwa R.J., Choudhary S., Khatri V. Microwave dielectric
spectra and molecular relaxation in formamide–N,N–dimethyl-
formamide binary mixtures // Spectrochim. Acta A. – 2011. –
Vol. 82, ¹1. – P. 279–282.
91.Sengwa R.J., Khatri V., Choudhary S. Temperature dependent
static dielectric constant and viscosity behaviour of glycerol-
amide binary mixtures: Characterization of dominant complex
structures in dielectric polarization and viscous flow proces-
ses // J. Mol. Liq. – 2010. – Vol. 154, ¹2–3. – P. 117–123.
92.Sengwa R.J., Khatri V., Sankhla S. Dielectric behaviour and
hydrogen bond molecular interaction study of formamide-di-
polar solvents binary mixtures // J. Mol. Liq. – 2009. – Vol. 144,
¹1–2. – P. 89–96.
93.Sengwa R.J., Khatri V., Sankhla S. Structure and hydrogen
bonding in binary mixtures of N,N-dimethylformamide with some
dipolar aprotic and protic solvents by dielectric characteri-
zation // Ind. J. Chem. – 2009. – Vol. 48A, ¹4. – P. 512–519.
94.Sengwa R.J., Sankhla S. Characterization of heterogeneous
interaction in binary mixtures of ethylene glycol oligomer with
water, ethyl alcohol and dioxane by dielectric analysis // J. Mol.
Liq. – 2007. – Vol. 130, ¹1–3. – P. 119–131.
95.Shirgire S.D., Talware R.B., Kadam S.S. et al. Dielectric re-
laxation of d-sorbitol – water mixtures using a Time Domain
Reflectometry Technique // J. Mol. Liq. – 2012. – Vol. 169. –
P. 33–36.
96.Synthetic glycerine – dielectric constant [Ýëåêòðîííûé
äîêóìåíò] // [âåá-ñàéò] [www.dow.com/optim/optim-
advantage/physical-properties/dielectric.htm] (1.06.2014).
97.Tommila E., Murto M.-L. The influence of the solvent on reaction
velocity. XXIII. The alkaline hydrolysis of ethyl acetate in
dimethyl sulphoxide – water mixtures // Acta Chem. Scand. –
1963. – Vol. 17, ¹7. – P. 1947–1956.
98.Tsai C. S. Spontaneous decarboxylation of oxalacetic acid //
Can. J. Chem. – 1967. – Vol. 45, ¹ 8. – P. 873–880.
99.Uematsu M., Franck E.U. Static dielectric constant of water
and steam // J. Phys. Chem. Ref. Data. – 1980. – Vol. 9, ¹4. –
P. 1291–1306.
100.Undre P.B., Khirade P.W., Rajenimbalkar V.S. et al. Dielectric
relaxation in ethylene glycol – dimethyl sulfoxide mixtures as
a function of composition and temperature // J. Korean Chem.
Soc. – 2012. – Vol. 56, ¹4. – P. 416–423.
101.Wang P., Anderko A. Computation of dielectric constants of
solvent mixtures and electrolyte solutions // Fluid Phase
Equilibr. – 2001. – Vol. 186, ¹1–2. – P. 103–122.
102.Wear J.O. Apparatus for dielectric constant measurements
and measurements for water-methanol mixtures // Arkansas
Acad. Sci. Proc. – 1970. – Vol. 24, ¹1. – P. 80–83.
103.Wohlfart C. Static dielectric constants of pure liquids and
binary liquid mixtures. – Berlin, New York: Springer Science &
Business Media, 2008. – 203 p.
104.Yilmaz H. Excess properties of alcohol-water systems at
298.15 K // Turk. J. Phys. – 2002. – Vol. 26, ¹3. – P. 243–246.
105.Yoon G. Dielectric properties of glucose in bulk aqueous
solutions: Influence of electrode polarization and modeling //
Biosens. Bioelectron. – 2011. – Vol. 26, ¹5. – P. 2347–2353.
106.Zahn M., Ohki Y., Fenneman D.B. et al. Dielectric properties
of water and water/ethylene glycol mixtures for use in pulsed
power system design // Proc. IEEE. – 1986. – Vol. 74, ¹9. –
P. 1182–1236.
150 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû
problems of cryobiology and cryomedicine
òîì/volume 25, ¹/issue 2, 2015
93.Static dielectric constant of water and steam at saturation
condition Available from: http://twt.mpei.ac.ru/tthb/2/OIVT/
HB_v201/GLAVA3/Table3_6.pdf [cited 11.06.2014].
94. Synthetic glycerine – dielectric constant Available from:
www.dow.com/optim/optim-advantage/physical-properties/
dielectric.htm [cited 1.06.2014].
95.Tommila E., Murto M.-L. The influence of the solvent on reaction
velocity. XXIII. The alkaline hydrolysis of ethyl acetate in di-
methyl sulphoxide – water mixtures. Acta Chem Scand 1963;
17(7): 1947–1956.
96.Tsai C. S. Spontaneous decarboxylation of oxalacetic acid.
Can. J. Chem. 1967; 45(8): 873–880.
97.Uematsu M., Franck E.U. Static dielectric constant of water
and steam. J. Phys. Chem. Ref. Data 1980; 9(4): 1291–1306.
98.Undre P.B., Khirade P.W., Rajenimbalkar V.S. et al. Dielectric
relaxation in ethylene glycol – dimethyl sulfoxide mixtures as
a function of composition and temperature. J Korean Chem
Soc 2012; 56(4): 416–423.
99.Wang P., Anderko A. Computation of dielectric constants of
solvent mixtures and electrolyte solutions. Fluid Phase Equilibr
2001; 186(1–2): 103–122.
100.Wear J.O. Apparatus for dielectric constant measurements
and measurements for water-methanol mixtures. Arkansas
Acad Sci Proc 1970; 24(1): 80–83.
101.Wohlfart C. Static dielectric constants of pure liquids and bi-
nary liquid mixtures. Berlin, New York: Springer Science &
Business Media, 2008.
102.Yilmaz H. Excess properties of alcohol-water systems at
298.15 K. Turk J Phys 2002.; 26(3): 243–246.
103.Yoon G. Dielectric properties of glucose in bulk aqueous so-
lutions: Influence of electrode polarization and modeling.
Biosens. Bioelectron. 2011; 26(5): 2347–2353.
104.Zahn M., Ohki Y., Fenneman D.B. et al. Dielectric properties
of water and water/ethylene glycol mixtures for use in pulsed
power system design. Proc IEEE 1986; 74(9): 1182–1236.
105.Zhuravlev A.V., Susliaev V.I., Tarasenko P.F. Selection of the
model of substance dielectric relaxation for measured spect-
rums of the mixture of methyl alcohol and water on the basis
of testing hypotheses. Izvestia Vischih Uchebnih Zavedeniy
Fizika. 2010; 53(9–3): 279–80.
106.Zhuravlev V.I., Usacheva T.M. Equilibrium dielectric properties
of butanediols. Moscow Univ Chem Bull 2010; 65(4): 225–
228.
|