Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей

Систематизированны литературные данные по статистической диэлектрической проницаемости воды, чистых криопротекторов, их водных растворов и смесей. Построены эмпирические полиномиальные уравнения для расчета статистической диэлектрической проницаемости воды и чистых криопротекторов в зависимости от т...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Тодрин, А.Ф., Тимофеева, Е.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем кріобіології і кріомедицини НАН України 2015
Назва видання:Проблемы криобиологии и криомедицины
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/134518
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей / А.Ф. Тодрин, Е.В. Тимофеева // Проблемы криобиологии и криомедицины. — 2015. — Т. 25, № 2. — С. 131–150. — Бібліогр.: 106 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-134518
record_format dspace
spelling irk-123456789-1345182018-06-14T03:06:17Z Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей Тодрин, А.Ф. Тимофеева, Е.В. Теоретическая и экспериментальная криобиология Систематизированны литературные данные по статистической диэлектрической проницаемости воды, чистых криопротекторов, их водных растворов и смесей. Построены эмпирические полиномиальные уравнения для расчета статистической диэлектрической проницаемости воды и чистых криопротекторов в зависимости от температуры. Для водных растворов и смесей некоторых криопротекторов получены эмпирические полиноминальные уравнения в зависимости от температуры при фиксированных концентрациях или от концентрации при фиксированных температурах. Систематизовані літературні дані по статистичної діелектричної проникності води, чистих кріопротекторів, їх водних розчинів і сумішей. Побудовано емпіричні поліноміальні рівняння для розрахунку статистичної діелектричної проникності води і чистих кріопротекторів в залежності від температури. Для водних розчинів і сумішей деяких кріопротекторів отримані емпіричні поліномінальної рівняння в залежності від температури при фіксованих концентраціях або від концентрації при фіксованих температурах. There were summarised the reported data on static dielectric permeability for water, pure cryoprotectants, their aqueous solutions and mixtures. The empirical polynomial equations to calculate static dielectric permeability for water and pure cryoprotectants depending on temperature were derived. The empirical polynomial equations for aqueous solutions and mixtures of some cryoprotectants depending on either the temperature at fixed concentrations or the concentration at fixed temperatures were obtained. 2015 Article Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей / А.Ф. Тодрин, Е.В. Тимофеева // Проблемы криобиологии и криомедицины. — 2015. — Т. 25, № 2. — С. 131–150. — Бібліогр.: 106 назв. — рос. 0233-7673 http://dspace.nbuv.gov.ua/handle/123456789/134518 547.42:537.226.1/.2 ru Проблемы криобиологии и криомедицины Інститут проблем кріобіології і кріомедицини НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Теоретическая и экспериментальная криобиология
Теоретическая и экспериментальная криобиология
spellingShingle Теоретическая и экспериментальная криобиология
Теоретическая и экспериментальная криобиология
Тодрин, А.Ф.
Тимофеева, Е.В.
Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
Проблемы криобиологии и криомедицины
description Систематизированны литературные данные по статистической диэлектрической проницаемости воды, чистых криопротекторов, их водных растворов и смесей. Построены эмпирические полиномиальные уравнения для расчета статистической диэлектрической проницаемости воды и чистых криопротекторов в зависимости от температуры. Для водных растворов и смесей некоторых криопротекторов получены эмпирические полиноминальные уравнения в зависимости от температуры при фиксированных концентрациях или от концентрации при фиксированных температурах.
format Article
author Тодрин, А.Ф.
Тимофеева, Е.В.
author_facet Тодрин, А.Ф.
Тимофеева, Е.В.
author_sort Тодрин, А.Ф.
title Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
title_short Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
title_full Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
title_fullStr Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
title_full_unstemmed Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
title_sort теплофизические свойства криопротекторов. viii. диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей
publisher Інститут проблем кріобіології і кріомедицини НАН України
publishDate 2015
topic_facet Теоретическая и экспериментальная криобиология
url http://dspace.nbuv.gov.ua/handle/123456789/134518
citation_txt Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей / А.Ф. Тодрин, Е.В. Тимофеева // Проблемы криобиологии и криомедицины. — 2015. — Т. 25, № 2. — С. 131–150. — Бібліогр.: 106 назв. — рос.
series Проблемы криобиологии и криомедицины
work_keys_str_mv AT todrinaf teplofizičeskiesvojstvakrioprotektorovviiidiélektričeskaâpronicaemostʹrâdakrioprotektorovihvodnyhrastvorovismesej
AT timofeevaev teplofizičeskiesvojstvakrioprotektorovviiidiélektričeskaâpronicaemostʹrâdakrioprotektorovihvodnyhrastvorovismesej
first_indexed 2025-07-09T21:35:06Z
last_indexed 2025-07-09T21:35:06Z
_version_ 1837206772405764096
fulltext ÓÄÊ 547.42:537.226.1/.2 À.Ô. Òîäðèí*, Å.Â. Òèìîôååâà Òåïëîôèçè÷åñêèå ñâîéñòâà êðèîïðîòåêòîðîâ. VIII. Äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü ðÿäà êðèîïðîòåêòîðîâ, èõ âîäíûõ ðàñòâîðîâ è ñìåñåé UDC 547.42:537.226.1/.2 A.F. Todrin*, E.V. Timofeyeva Thermophysical Properties of Cryoprotectants. VIII. Dielectric Permeability of Some Cryoprotectants, Their Aqueous Solutions and Mixtures Ðåôåðàò: Ñèñòåìàòèçèðîâàíû ëèòåðàòóðíûå äàííûå ïî ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè âîäû, ÷èñòûõ êðèîïðîòåêòîðîâ, èõ âîäíûõ ðàñòâîðîâ è ñìåñåé. Ïîñòðîåíû ýìïèðè÷åñêèå ïîëèíîìèàëüíûå óðàâíåíèÿ äëÿ ðàñ÷åòà ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè âîäû è ÷èñòûõ êðèîïðîòåêòîðîâ â çàâèñèìîñòè îò òåìïåðàòóðû. Äëÿ âîäíûõ ðàñòâîðîâ è ñìåñåé íåêîòîðûõ êðèîïðîòåêòîðîâ ïîëó÷åíû ýìïèðè÷åñêèå ïîëèíîìèàëüíûå óðàâíåíèÿ â çàâèñèìîñòè îò òåìïåðàòóðû ïðè ôèêñèðîâàííûõ êîíöåíòðàöèÿõ èëè îò êîíöåíòðàöèè ïðè ôèêñèðîâàííûõ òåìïåðàòóðàõ. Êëþ÷åâûå ñëîâà: êðèîïðîòåêòîð, ñòàòè÷åñêàÿ äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü, ýìïèðè÷åñêèå ïîëèíîìèàëüíûå óðàâíåíèÿ. Ðåôåðàò: Ñèñòåìàòèçîâàíî ë³òåðàòóðí³ äàí³ ç³ ñòàòè÷íî¿ ä³åëåêòðè÷íî¿ ïðîíèêíîñò³ âîäè, ÷èñòèõ êð³îïðîòåêòîð³â, ¿õ âîäíèõ ðîç÷èí³â ³ ñóì³øåé. Ïîáóäîâàíî åìï³ðè÷í³ ïîë³íîì³àëüí³ ð³âíÿííÿ äëÿ ðîçðàõóíêó ñòàòè÷íî¿ ä³åëåêòðè÷íî¿ ïðîíèêíîñò³ âîäè ³ ÷èñòèõ êð³îïðîòåêòîð³â â çàëåæíîñò³ â³ä òåìïåðàòóðè. Äëÿ âîäíèõ ðîç÷èí³â ³ ñóì³øåé äåÿêèõ êð³îïðîòåêòîð³â îòðèìàíî åìï³ðè÷í³ ïîë³íîì³àëüí³ ð³âíÿííÿ â çàëåæíîñò³ â³ä òåìïåðàòóðè ïðè ô³êñîâàíèõ êîíöåíòðàö³ÿõ àáî â³ä êîíöåíòðàö³¿ ïðè ô³êñîâàíèõ òåìïåðàòóðàõ. Êëþ÷îâ³ ñëîâà: êð³îïðîòåêòîð, ñòàòè÷íà ä³åëåêòðè÷íà ïðîíèêí³ñòü, åìï³ðè÷í³ ïîë³íîì³àëüí³ ð³âíÿííÿ. Abstract: There were summarised the reported data on static dielectric permeability for water, pure cryoprotectants, their aqueous solutions and mixtures. The empirical polynomial equations to calculate static dielectric permeability for water and pure cryoprotectants depending on temperature were derived. The empirical polynomial equations for aqueous solutions and mixtures of some cryoprotectants depending on either the temperature at fixed concentrations or the concentration at fixed temperatures were obtained. Key words: cryoprotectant, static dielectric permeability, empirical polynomial equations. *Àâòîð, êîòîðîìó íåîáõîäèìî íàïðàâëÿòü êîððåñïîíäåíöèþ: óë. Ïåðåÿñëàâñêàÿ, 23, ã. Õàðüêîâ, Óêðàèíà 61015; òåë.: (+38 057) 373-38-71, ôàêñ: (+38 057) 373-30-84, ýëåêòðîííàÿ ïî÷òà: todrin@mail.ru *To whom correspondence should be addressed: 23, Pereyaslavskaya str., Kharkov, Ukraine 61015; tel.:+380 57 3733871, fax: +380 57 373 3084, e-mail: todrin@mail.ru Department of Low Temperature Preservation, Institute for Prob- lems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov, Ukraine Îòäåë íèçêîòåìïåðàòóðíîãî êîíñåðâèðîâàíèÿ, Èíñòèòóò ïðîáëåì êðèîáèîëîãèè è êðèîìåäèöèíû ÍÀÍ Óêðàèíû, ã. Õàðüêîâ Ïîñòóïèëà 16.09.2014 Ïðèíÿòà â ïå÷àòü 02.10.2014 Ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû. – 2015. – Ò. 25, ¹1. – Ñ. 131–150. © 2015 Èíñòèòóò ïðîáëåì êðèîáèîëîãèè è êðèîìåäèöèíû ÍÀÍ Óêðàèíû Received September, 16, 2014 Accepted October, 02, 2014 Probl. Cryobiol. Cryomed. 2015. 25(1): 131–150. © 2015 Institute for Problems of Cryobiology and Cryomedicine îðèãèíàëüíîå èññëåäîâàíèå research article Äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü – ôèçè÷åñêàÿ âåëè÷èíà, êîòîðàÿ õàðàêòåðèçóåò ñâîéñòâà èçîëè- ðóþùåé (äèýëåêòðè÷åñêîé) ñðåäû è ïîêàçûâàåò çàâèñèìîñòü ýëåêòðè÷åñêîé èíäóêöèè îò íàïðÿæåí- íîñòè ýëåêòðè÷åñêîãî ïîëÿ. Îíà îïðåäåëÿåòñÿ ýôôåêòîì ïîëÿðèçàöèè äèýëåêòðèêîâ ïîä äåéñò- âèåì ýëåêòðè÷åñêîãî ïîëÿ è âåëè÷èíîé äèýëåêòðè- ÷åñêîé âîñïðèèì÷èâîñòè ñðåäû. Ëþáàÿ ñðåäà óìåíüøàåò íàïðÿæåííîñòü ýëåêò- ðè÷åñêîãî ïîëÿ ïî ñðàâíåíèþ ñ âàêóóìîì. Äè- ýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü ïîêàçûâàåò, âî ñêîëüêî ðàç ýëåêòðè÷åñêîå ïîëå â äèýëåêòðèêå ìåíüøå ýëåêòðè÷åñêîãî ïîëÿ â âàêóóìå, è äàåò âîçìîæíîñòü ñóäèòü îá èíòåíñèâíîñòè ïðîöåññîâ Dielectric permeability is the physical quantity, characterizing properties of isolating (dielectric) me- dium and demonstrating the dependency of dielectric flux density on electric field intensity. It is determined by the polarizaton effect of dielectrics under the impact of electric field and by characterizing this effect value of dielectric susceptibility of medium. Any medium reduces the electric field intensity if compared to the vacuum. Dielectric permeability shows in which extent a electric field in a dielectrics is lower than in the vacuum and enables judging about the intensity of polarization processes and the quality of dielectric. The dielectric polarization is determined by the total effect of different polarization mechanisms. 132 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 Temperature and frequency dependencies of dielectric permeability contain information about polarization mechanisms and their relative contribution into di- electric polarization. The increase in dielectric perme- ability results in rise of electric conductivity. The research aim was to summarize and systema- tize the reported data, using the derived empirical formulae to calculate the values of static dielectric permeability for pure cryoprotectants, their aqueous solutions and mixtures depending on cryoprotectant mass concentration and temperature. Collected published experimental data on static dielectric permeability for cryoprotectants, aqueous solutions and mixtures were processed with Excel 2003 software (Microsoft, USA). Along with the data for cryoprotectants we also processed the published expe- rimental findings for water, ice and some solutions of substances, important for both human vital activity and cryobiology. The Tables show concentrations in mass percentage for the substance mentioned first. The following abbreviations are assumed in the Tables: BD – butanediol, BSA – bovine serum albumin, CF – chloroform, DMAc – dimethylacetamide, DMSO – dimethyl sulfoxide, DMFA – dimethylformamide, DEG – diethylene glycol, EG – ethylene glycol, FA – formamide, MAc – methylacetamide, MFA – methylformamide, PVP – polyvinylpyrrolidone, PD – propanediol, PEG – polyethylene glycol, TEG – triethylene glycol, l. p. – liquid phase, s. p. – solid phase. ïîëÿðèçàöèè è êà÷åñòâå äèýëåêòðèêà. Ïîëÿðèçàöèÿ äèýëåêòðèêà îïðåäåëÿåòñÿ ñóììàðíûì äåéñòâèåì ðàçëè÷íûõ ìåõàíèçìîâ ïîëÿðèçàöèè. Ïî òåìïåðà- òóðíîé è ÷àñòîòíîé çàâèñèìîñòè äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ìîæíî ïîëó÷èòü èíôîðìàöèþ î ìåõàíèçìàõ ïîëÿðèçàöèè è èõ îòíîñèòåëüíîì âêëàäå â ïîëÿðèçàöèþ äèýëåêòðèêà. Âîçðàñòàíèå äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ïðèâîäèò ê ðîñòó ýëåêòðîïðîâîäíîñòè. Öåëü ðàáîòû – îáîáùåíèå è ñèñòåìàòèçàöèÿ ëèòåðàòóðíûõ äàííûõ íà îñíîâå ïîñòðîåíèÿ ýìïè- ðè÷åñêèõ ôîðìóë äëÿ ðàñ÷åòà çíà÷åíèé ñòàòè÷åñ- êîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ÷èñòûõ êðèîïðîòåêòîðîâ, èõ âîäíûõ ðàñòâîðîâ è ñìåñåé â çàâèñèìîñòè îò ìàññîâîé êîíöåíòðàöèè êðèîïðî- òåêòîðà è òåìïåðàòóðû. Ýêñïåðèìåíòàëüíûå ðåçóëüòàòû ïî ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè êðèîïðîòåêòîðîâ, âîäíûõ ðàñòâîðîâ è ñìåñåé, ïðèâåäåííûå â ëèòå- ðàòóðå, áûëè îáðàáîòàíû ñ ïîìîùüþ ïðîãðàììû «Excel 2003» («Microsoft», ÑØÀ). Íàðÿäó ñ äàí- íûìè äëÿ êðèîïðîòåêòîðîâ áûëè îáðàáîòàíû è ýêñïåðèìåíòàëüíûå ëèòåðàòóðíûå äàííûå äëÿ âîäû, ëüäà è ðÿäà ðàñòâîðîâ âåùåñòâ, êîòîðûå âàæíû êàê äëÿ æèçíåäåÿòåëüíîñòè ÷åëîâåêà, òàê è äëÿ êðèîáèîëîãèè.  òàáëèöàõ êîíöåíòðàöèè ïðèâåäåíû â ìàññîâûõ ïðîöåíòàõ äëÿ âåùåñòâà, óêàçàííîãî ïåðâûì.  òàáëèöàõ ïðèíÿòû ñëåäóþùèå óñëîâíûå îáîçíà÷åíèÿ: ÁÄ – áóòàíäèîë, ÁÑÀ – áû÷èé ñûâîðîòî÷íûé àëüáóìèí, ÄÌÀö – äèìåòèëàöåòàìèä, ÄÌÑÎ – äèìåòèëñóëüôîêñèä, ÄÌÔÀ – äèìåòèëôîðìàìèä, ÄÝà – äèýòèëåíãëèêîëü, Ì – ìîëÿðíîñòü, ÌÀö – ìåòèëàöåòàìèä, ÌÔÀ – ìåòèëôîðìàìèä, ÏÂÏ – ïîëèâèíèëïèððîëèäîí, ÏÄ – ïðîïàíäèîë, ÏÝà – ïîëèýòèëåíãëèêîëü, ÒÝà – òðèýòèëåíãëèêîëü, ÔÀ – ôîðìàìèä, ÕÔ – õëîðîôîðì, Ýà – ýòèëåíãëèêîëü, æ. ô. – æèäêàÿ ôàçà, òâ. ô. – òâåðäàÿ ôàçà. îâòñåùå ecnatsbuS åèíåíâàðÓ noitauqE R2 íîçàïàèÄ Ñ°,ðóòàðåïìåò erutarepmeT Ѱ,egnar êèí÷îòñÈ secnerefeR .ô.æ,àäî .p.l,retaW ε 217,9–= × 01 7– t3 777,8+ × 01 4– t2 – 99,78+t9204,0– 5999,0 073...04– ,71,51,11,01,2[ ,73,63,52–32 46,45,34,04,93 ,08,87,17,66– ]601,301,99,69 ,71–51,9,7,3,2[ ,23,13,92,82 ,06,85,64,53 ,77,57,66,16 ,101,79,49,39 ]401 )äåë(.ô.âò,àäî )eci(.p.s,retaW ε 8,2= × 01 3– t2 8,39+t6703,0– 5499,0 0...321– ,34,63,91,41[ ]45 ]64,53,82,11,4[ ÄÁ-2,1 DB-2,1 ε 319,52+t6631,0–= 3699,0 05...5 ]63,2[ ]82,2[ ÄÁ-3,1 DB-3,1 ε 713,1–= × 01 6– t3 570,7+ × 01 4– t2 – 84,33+t3991,0– 9799,0 051...82– ]63,4,2[ ]601,82,2[ ÄÁ-4,1 DB-4,1 ε 590,4= × 01 4– t2 66,53+t3391,0– 3799,0 051...51 ]66,9,4,2[ ]601,96,16,2[ ÄÁ-3,2 DB-3,2 ε 153,2= × 01 4– t2 96,32+t4411,0– 2999,0 051...01 ]301,4[ ]601,101[ ÄÏ-2,1 DP-2,1 ε 951,2= × 01 8– t4 954,6– × 01 6– t3 + 638,9+ × 01 4– t2 0,43+t7102,0– 5699,0 051...09– ,62,52,61,6,2[ ]29,98,43,92 ,12,81,71,8,2[ ]98,68,35,62 ÄÏ-3,1 DP-3,1 ε 875,2= × 01 6– t3 448,2+ × 01 4– t2 – 81,93+t4202,0– 8799,0 001...03– ]301,63[ ]101,82[ äèìàòåöÀ edimatecA ε 942,2–= × 01 3– t2 79,55+t2133,0+ 4999,0 571...19 ]63,2[ ]82,2[ .ô.æ,íèðåöèëà .p.l,lorecylG ε 431,5= × 01 4– t2 16,84+t3662,0– 3399,0 001...87– ,53,43,52,9,2[ ,39,19,16,73 ]301,69 ,92,72,62,71,2[ ,09,88,96,55 ]101,49 .ô.âò,íèðåöèëà .p.s,lorecylG ε 12,7= × 01 4– t3 t5501,0+ 2 + 85,19+t702,5+ 7999,0 31–...35– ]61[ ]8[ ε 381,1= × 01 3– t3 t58130,0– 2 – 21,74+t83660,0– 0,1 71...31– öÀÌÄ cAMD ε 485,6= × 01 4– t2 3,44+t5942,0– 2199,0 061...51– ,35,73,63,5,2[ ]301,19 ,74,54,92,82,2[ ]101,88 ÎÑÌÄ OSMD ε 669,2= × 01 6– t4 444,5– × 01 4– t3 + 725,3+ × 01 2– t2 45,85+t170,1– 399,0 07...01 ,39,73,53,62[ ]301,001 ,09,92,82,81[ ]101,89 ÀÔÌÄ AFMD ε 627,1–= × 01 6– t3 400,8+ × 01 4– t2 – 21,24+t4112,0– 3599,0 541...06– ]301,63,9,5,2[ ,96,74,82,2[ ]101 ÃÝÄ GED ε 90,1= × 01 4– t2 40,63+t2402,0– 2499,0 001...02– ,07,04,63,5,2[ ]29 ,56,74,23,82,2[ ]98 öÀÌ cAM ε 312,1–= × 01 5– t3 393,7+ × 01 3– t2 – 88,22+t698,1– 4999,0 002...52 ]65,63,62,2[ ]94,82,81,2[ ëîíàòåÌ lonahteM ε 879,3–= × 01 6– t3 540,1+ × 01 3– t2 – 93,73+t9032,0– 6499,0 041...011– ,52,32,9,5,3,2[ ,93,83,63,72 ,97,66,75,94 ]301,08 ,82,91,71,51,2[ ,74,14,13,03 ,67,96,16,05 ]501,101,77 ÀÔÌ AFM ε 191,2= × 01 6– t3 826,7+ × 01 3– t2 – 2,122+t909,1– 199,0 08...04– ]301,73,63,5,2[ ,74,92,82,2[ ]101 ).ô.âò(0001-ÃÝÏ ).p.s(0001-GEP ε 924,6= × 01 6– t3 594,6+ × 01 4– t2 + 845,4+t74140,0+ 7379,0 03...07– ]85[ ]15[ 006-ÃÝÏ 006-GEP ε 3,6–= × 01 5– t3 893,7+ × 01 3– t2 – 30,41+t9772,0– 3869,0 06...01 ]68,85[ ]38,15[ ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 133 Òàáëèöà 1. Óðàâíåíèÿ äëÿ ðàñ÷åòà ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ÷èñòûõ âåùåñòâ â çàâèñèìîñòè îò òåìïåðàòóðû; äèñïåðñèè àïïðîêñèìàöèé è äèàïàçîíû òåìïåðàòóð ïðèìåíåíèÿ óðàâíåíèé Table 1. Equations to calculate static dielectric permeability for pure substances depending on temperature; dispersions of approximations and temperature ranges of equation application Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page îâòñåùå ecnatsbuS åèíåíâàðÓ noitauqE R2 íîçàïàèÄ Ñ°,ðóòàðåïìåò erutarepmeT Ѱ,egnar êèí÷îòñÈ secnerefeR 004-ÃÝÏ 004-GEP ε 351,4= × 01 4– t2 12,61+t1731,0– 1889,0 52...0 ]68[ ]38[ 003-ÃÝÏ 003-GEP ε 683,5= × 01 4– t2 5,71+t231,0– 7189,0 52...0 ]49,68,26[ ]19,38,65[ 002-ÃÝÏ 002-GEP ε 425,5= × 01 4– t2 97,32+t9361,0– 9479,0 52...4 ]49,68[ ]19,38[ ÃÝÒ GET ε 372,4= × 01 4– t2 72,62+t9241,0– 5599,0 06...02– ]63,5,2[ ]74,82,2[ ëîíåÔ lonehP ε 656,2= × 01 4– t2 83,51+t4301,0– 4599,0 061...4 ]93,63,2[ ]13,82,2[ äèìàìðîÔ edimamroF ε 889,7= × 01 5– t2 4,911+t3434,0– 499,0 56...0 ]301,63,2[ ]101,82,2[ ).ô.âò(ìðîôîðîëÕ ).p.s(mroforolhC ε 87,5= × 01 5– t2 813,3+t23410,0– 9869,0 07–...941– ]97,2[ ]67,2[ ìðîôîðîëÕ mroforolhC ε 239,3= × 01 5– t2 291,5+t32910,0– 2499,0 081...07– ]97,66,93,52,2[ ]67,16,13,71,2[ ëîíàòÝ lonahtE ε 769,1= × 01 8– t4 143,4– × 01 6– t3 + 912,4+ × 01 4– t2 9,72+t2351,0– 5599,0 061...341– ,52,42,9,5,2[ ,17,75,55,63 ]301,49,97 ,74,82,71,61,2[ ,96,66,05,84 ]101,19,67 ÃÝ GE ε 646,4= × 01 4– t2 43,64+t3232,0– 5699,0 051...02– ,93,63,62,52,2[ ,98,08,27,04 ]001,39 ,13,82,81,71,2[ ,09,77,86,23 ]89 ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR àäîâ–ÄÏ-2,1 retaw–DP-2,1 52 ε 710,1–= × 01 3– Ñ2 +Ñ5473,0– 54,87+ 5999,0 001...0 ]301,92,62[ ]101,12,81[ àäîâ–ÄÁ-3,1 retaw–DB-3,1 52 ε 54,87+Ñ1794,0–= 9999,0 001...0 ]67,63,6,4[ ,37,35,82[ ]601 lCaC 2 àäîâ- lCaC 2 retaw- 52 ε 556,2–= × 01 3– Ñ3 Ñ861,0+ 2 – 54,87+Ñ815,3– 9999,0 43...0 ]1[ ]1[ àäîâ-lCK retaw-lCK 51 ε Ñ2317,0= 2 41,28+Ñ9476,3– 99,0 2...0 ]1[ ]1[ 02 ε 82,08+Ñ6416,1–= 1399,0 7...0 ]74[ ]93[ 52 ε 54,87+Ñ2554,1–= 1099,0 41...0 ]15,1[ ]34,1[ 53 ε 29,47+Ñ2957,1–= 6799,0 4...0 ]1[ ]1[ àäîâ-lCaN retaw-lCaN 0 ε 327,6= × 01 2– Ñ2 99,78+Ñ576,3– 5799,0 52...0 ]101,1[ ]99,1[ 5,1 ε 854,7= × 01 2– Ñ2 93,78+Ñ893,3– 9399,0 52...0 ]15,1[ ]34,1[ 3 ε 759,6= × 01 2– Ñ2 97,68+Ñ267,2– 199,0 5...0 ]1[ ]1[ 134 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 Ïðîäîëæåíèå òàáëèöû 1 Table 1. (Continued) Òàáëèöà 2. Óðàâíåíèÿ äëÿ ðàñ÷åòà ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ðàñòâîðîâ êðèîïðîòåêòîðîâ â çàâèñèìîñòè îò êîíöåíòðàöèè êðèîïðîòåêòîðîâ ïðè ôèêñèðîâàííîé òåìïåðàòóðå; äèñïåðñèè àïïðîêñèìàöèé è äèàïàçîíû êîíöåíòðàöèé ïðèìåíåíèÿ óðàâíåíèé Table 2. Equations to calculate static dielectric permeability for cryoprotective solutions depending on cryoprotectant concentration at a fixed temperature; dispersions of approximations and temperature ranges of equation application Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR àäîâ-lCaN retaw-lCaN 5 ε 251,3= × 01 2– Ñ2 0,68+Ñ986,2– 7999,0 42...0 ]84[ ]04[ 01 ε 602,5= × 01 2– Ñ2 50,48+Ñ993,3– 4899,0 61...0 ]1[ ]1[ 02 ε 651,3= × 01 2– Ñ2 82,08+Ñ33,2– 5799,0 42...0 ]95,84[ ]25,04[ 52 ε 1,3= × 01 2– Ñ2 54,87+Ñ372,2– 2599,0 52...0 ,84,33,23,1[ ]101 ,04,52,42,1[ ]99 03 ε 149,3= × 01 2– Ñ2 76,67+Ñ485,2– 1399,0 52...0 ]101,15,1[ ]99,34,1[ 53 ε 500,4= × 01 2– Ñ2 29,47+Ñ222,2– 5899,0 42...0 ]84[ ]04[ 04 ε 507,3= × 01 2– Ñ2 22,37+Ñ268,2– 8999,0 61...0 ]12,1[ ]31,1[ 05 ε 430,8= × 01 2– Ñ2 29,96+Ñ750,3– 5599,0 11...0 ]101[ ]99[ íèðåöèëã-lCaN lorecylg-lCaN 5,53- ε = – 942,1 × 01 3– Ñ3 – Ñ96060,0 2 – – 17,85+Ñ181,1 5589,0 92...0 ]1[ ]1[ àäîâ-íèíàëÀ retaw-eninalA 52 ε Ñ3211,0= 3 Ñ295,1– 2 +Ñ622,8+ 54,87+ 0,1 9...0 ]82[ ]02[ 03 ε 518,2= × 01 2– Ñ3 – Ñ1333,0 2 + 76,67+Ñ456,3+ 4799,0 9...0 53 ε 481,2= × 01 2– Ñ3 Ñ2403,0– 2 + 29,47+Ñ348,3+ 9499,0 9...0 04 ε 397,6= × 01 2– Ñ3 Ñ810,1– 2 + 22,37+Ñ178,5+ 8789,0 9...0 àäîâ-ÀÑÁ retaw-ASB 52 ε 705,4–= × 01 2– Ñ4 Ñ234,0+ 3 – Ñ5,1– 2 54,87+Ñ263,1+ 9599,0 5...0 ]21[ ]4[ àäîâ-àçîòêàëàà retaw-esotcalaG 5 ε 768,1–= × 01 3– Ñ2 0,68+Ñ3261,0– 799,0 81...0 ]13,1[ ]32,1[ 01 ε 859,1–= × 01 3– Ñ2 50,48+Ñ6351,0– 9499,0 81...0 51 ε 709,2–= × 01 3– Ñ2 41,28+Ñ9731,0– 299,0 81...0 02 ε 19,3–= × 01 3– Ñ2 82,08+Ñ7721,0– 8199,0 81...0 52 ε 218,5= × 01 4– Ñ2 54,87+Ñ391,0– 4499,0 06...0 03 ε 976,4= × 01 4– Ñ2 76,67+Ñ7502,0– 6699,0 06...0 53 ε 134,3–= × 01 3– Ñ2 29,47+Ñ2341,0– 2799,0 81...0 04 ε 121,4= × 01 4– Ñ2 22,37+Ñ8891,0– 4699,0 06...0 05 ε 404,1–= × 01 3– Ñ2 29,96+Ñ43880,0– 6799,0 06...0 öÀÌÄ-íèðåöèëà cAMD-lorecylG 51 ε 42,7–= × 01 6– Ñ3 238,2+ × 01 4– Ñ2+ 17,04+Ñ52080,0+ 8599,0 001...0 ]19[ ]88[ 03 ε 808,2–= × 01 6– Ñ3 533,5– × 01 4– Ñ2 + 14,73+Ñ2911,0+ 8799,0 001...0 54 ε 523,6= × 01 7– Ñ3 641,1– × 01 3– Ñ2 + 14,43+Ñ2451,0+ 5599,0 001...0 06 ε 523,2–= × 01 6– Ñ3 384,1– × 01 3– Ñ2 + 7,13+Ñ7271,0+ 9699,0 001...0 ÀÔÌÄ-íèðåöèëà AFMD-lorecylG 51 ε 201,1–= × 01 5– Ñ3 573,1– × 01 4– Ñ2 + 21,93+Ñ7271,0+ 3199,0 001...0 ]19[ ]88[ 03 ε 953,2–= × 01 6– Ñ3 544,1– × 01 3– Ñ2 + 54,63+Ñ2912,0+ 9399,0 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 135 Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR ÀÔÌÄ-íèðåöèëà AFMD-lorecylG 54 ε 376,1= × 01 6– Ñ3 319,1– × 01 3– Ñ2 + 70,43+Ñ2422,0 699,0 001...0 ]19[ ]88[ 06 ε 954,8–= × 01 7– Ñ3 893,1– × 01 3– Ñ2 49,13+Ñ2391,0+ 7499,0 àäîâ-íèðåöèëà retaw-lorecylG 5,91- ε 161,5–= × 01 3– Ñ2 +Ñ7371,0+ 57,78 7899,0 001...58 ]96[ ]46[3,51- ε 240,1= × 01 –2Ñ2 – +Ñ426,2 9,012 3599,0 001...58 5,7- ε 179,2= × 01 3– Ñ2 5,541+Ñ242,1– 6799,0 001...58 02 ε 699,1–= × 01 3– Ñ2 82,08+Ñ3781,0– 6699,0 001...0 ]87,53,7[ ]57,95,72[ 52 ε 59,1–= × 01 3– Ñ2 54,87+Ñ2181,0– 4499,0 ]69,58,48,87[ ,28,18,57[ ]49 03 ε 451,1–= × 01 3– Ñ2 76,67+Ñ4042,0– 9899,0 ]301,14,73[ ]101,33,92[ 53 ε 992,1–= × 01 3– Ñ2 29,47+Ñ9622,0– 4999,0 ]58,14[ ]28,33[ 73 ε 261,8–= × 01 4– Ñ2 42,47+Ñ6682,0– 1999,0 ]22[ ]41[ 04 ε 793,1–= × 01 3– Ñ2 22,37+Ñ7712,0– 2999,0 ]69,87[ ]49,57[ 54 ε 984,1–= × 01 3– Ñ2 55,17+Ñ8202,0– 6799,0 ]19,58,14[ ]88,28,33[ 06 ε 211,1–= × 01 3– Ñ2 77,66+Ñ9612,0– 6999,0 ]87[ ]57[ 07 ε 403,4–= × 01 4– Ñ2 57,36+Ñ2372,0– 5899,0 ]22,2[ ]41,2[ 08 ε 528,9–= × 01 4– Ñ2 88,06+Ñ8302,0– 4999,0 ]87[ ]57[ 001 ε =– 549,8 × 01 –4Ñ2 – 15,55+Ñ4781,0 8999,0 ]87[ ]57[ àçîëàãåðò-íèðåöèëà esolahert-lorecylG 32- ε 150,3= × 01 6– Ñ5 60,3– × 01 4– Ñ4 + Ñ62110,0+ 3 Ñ2581,0– 2 + 8,6+Ñ435,1+ 3599,0 74...0 ]31[ ]5[0 ε 369,1= × 01 6– Ñ5 710,2– × 01 4– Ñ4 + 708,7+ × 01 3– Ñ3 Ñ831,0– 2 + 624,7+Ñ603,1+ 3599,0 74...0 42 ε 501,1= × 01 6– Ñ5 452,1– × 01 4– Ñ4 + 355,5+ × 01 3– Ñ3 Ñ1311,0– 2 + 15,7+Ñ462,1+ 2499,0 74...0 ëîíàòý-íèðåöèëà lonahte-lorecylG 02 ε 826,5= × 01 –4Ñ2 79,42+Ñ6211,0+ 5499,0 001...0 ]53,7[ ]95,72[ 52 ε 202,1= × 01 –3Ñ2 72,42+Ñ5160,0+ 9899,0 ]301,88[ ]101,58[ íèöèëà – %48,2 lCaN -enicylG – %48.2 lCaN 52 ε 392,77+Ñ6912,3= 6999,0 02...0 ]33[ ]52[ íèöèëà – %6,5 lCaN enicylG – %6.5 lCaN 52 ε 767,67+Ñ3161,3= 9999,0 02...0 ]33[ ]52[ -íèöèëà – %58,01 lCaN enicylG – %58.01 lCaN 52 ε 398,47+Ñ3502,3= 6999,0 02...0 ]33[ ]52[ àäîâ-íèöèëà retaw-enicylG 81 ε 20,18+Ñ3891,3= 4999,0 81...0 ]1[ ]1[ 02 ε 82,08+Ñ711,3= 0,1 8...0 136 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR àäîâ-íèöèëà retaw-enicylG 52 ε 54,87+Ñ851,3= 8899,0 02...0 ]33,1[ ]52,1[ 03 ε 76,67+Ñ3560,3= 0,1 8...0 ]1[ ]1[ 04 ε 22,37+Ñ8099,2= 9999,0 8...0 05 ε 29,96+Ñ3559,2= 9999,0 8...0 àäîâ-àçîêþëà retaw-esoculG 5 ε 518,6–= × 01 4– Ñ2 0,68+Ñ8062,0– 8899,0 81...0 ]13[ ]32[01 ε 307,8–= × 01 4– Ñ2 50,48+Ñ3942,0– 4999,0 81...0 51 ε 808,1–= × 01 3– Ñ2 41,28+Ñ3722,0– 2999,0 81...0 02 ε 951,1–= × 01 4– Ñ3 757,8+ × 01 3– Ñ2 – 82,08+Ñ9373,0– 599,0 09...0 ]501,13,1[ ]301,32,1[ 52 ε 886,1–= × 01 3– Ñ2 54,87+Ñ5612,0– 9999,0 05...0 ]13,1[ ]32,1[ 03 ε 488,3–= × 01 5– Ñ3 287,1+ × 01 3– Ñ2 – 76,67+Ñ1172,0– 4699,0 09...0 ]1[ ]1[ 53 ε 491,2–= × 01 3– Ñ2 29,47+Ñ2102,0– 6899,0 81...0 ]13[ ]32[ 04 ε 406,5–= × 01 5– Ñ3 712,3+ × 01 3– Ñ2 – 22,37+Ñ5512,0– 1499,0 09...0 ]1[ ]1[ 05 ε 285,4–= × 01 5– Ñ3 194,2+ × 01 3– Ñ2 – 29,96+Ñ9791,0– 8499,0 09...0 06 ε 248,3–= × 01 5– Ñ3 249,1+ × 01 3– Ñ2 – 77,66+Ñ1971,0– 6799,0 09...0 07 ε 493,4–= × 01 5– Ñ3 199,2+ × 01 3– Ñ2 – 57,36+Ñ3712,0– 6599,0 59...0 08 ε 363,4–= × 01 5– Ñ3 984,3+ × 01 3– Ñ2 – 88,06+Ñ6142,0– 1599,0 59...0 09 ε 361,4–= × 01 5– Ñ3 818,3+ × 01 3– Ñ2 – 31,85+Ñ6562,0– 5399,0 59...0 àäîâ-öÀÌÄ retaw-cAMD 52 ε 50,2–= × 01 3– Ñ2 54,87+Ñ8442,0– 6999,0 001...0 ]301,73,5[ ]101,74,92[ àäîâ-ÎÑÌÄ retaw-OSMD 01 ε 845,7–= × 01 5– Ñ3 693,6+ × 01 3– Ñ2 – 50,48+Ñ8412,0– 2899,0 001...0 ]001,71[ ]89,9[ 02 ε 385,5–= × 01 5– Ñ3 132,3+ × 01 3– Ñ2 – 82,08+Ñ91890,0– 2999,0 ]53,81,71[ ]72,01,9[ 52 ε 87,5–= × 01 5– Ñ3 428,3+ × 01 3– Ñ2 – 54,87+Ñ5201,0– 2799,0 ,47,06,54,73[ ]79,78 ,45,73,92[ ]59,48,17 03 ε 101,5–= × 01 5– Ñ3 22,3+ × 01 3– Ñ2 – 76,67+Ñ4211,0– 3899,0 ]301,06,71[ ]101,45,9[ 53 ε 178,5–= × 01 5– Ñ3 169,4+ × 01 3– Ñ2– 29,47+Ñ7791,0– 5799,0 ]301,06,81[ ]101,45,01[ 04 ε 967,4–= × 01 5– Ñ3 942,3+ × 01 3– Ñ2 – 22,37+Ñ6321,0– 5699,0 ]301,06,71[ ]101,45,9[ 54 ε 558,4–= × 01 5– Ñ3 457,3+ × 01 3– Ñ2 – 55,17+Ñ4841,0– 2899,0 ]301,06[ ]101,45[ ÃÝ-ÎÑÌÄ GE-OSMD 01 ε 618,5–= × 01 7– Ñ4 817,8+ × 01 5– Ñ3 – 01x895,5 3– Ñ2 60,44+Ñ8633,0+ 5499,0 001...0 ]301,001[ ]101,89[ ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 137 Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR ÃÝ-ÎÑÌÄ GE-OSMD 02 ε 268,8–= × 01 7– Ñ4 454,1+ × 01 4– Ñ3 – 381,9– × 01 3– Ñ2 88,14+Ñ6614,0+ 8399,0 001...0 ]301,001[ ]101,89[ 52 ε 630,1–= × 01 6– Ñ4 168,1+ × 01 4– Ñ3 – 372,1– × 01 2– Ñ2 28,04+Ñ8825,0+ 299,0 001...0 03 ε 983,1–= × 01 6– Ñ4 304,2+ × 01 4– Ñ3 – 784,1– × 01 2– Ñ2 97,93+Ñ5345,0+ 8599,0 001...0 04 ε 92,1–= × 01 6– Ñ4 522,2+ × 01 4– Ñ3 – 224,1– × 01 2– Ñ2 97,73+Ñ3765,0+ 2799,0 001...0 àäîâ-ÀÔÌÄ retaw-AFMD 52 ε 506,1= × 01 6– Ñ3 290,3– × 01 3– Ñ2 – – 54,87+Ñ3911,0 2999,0 001...0 ]301,73,1[ ]101,92,1[ 03 ε 308,1= × 01 6– Ñ3 525,2– × 01 3– Ñ2 – – 76,67+Ñ5461,0 999,0 001...0 ]301,39[ ]101,09[ íèðåöèëã-ÀÔÌÄ lorecylg-AFMD 03 ε 372,6= × 01 6– Ñ3 606,2– × 01 3– Ñ2 + 80,14+Ñ8451,0+ 899,0 001...0 ]301,39[ ]101,09[ ÎÑÌÄ-ÀÔÌÄ OSMD-AFMD 03 ε 120,4–= × 01 4– Ñ2 68,54+Ñ34150,0– 1799,0 001...0 ]301,39[ ]101,09[ ëîíàòåì-ÀÔÌÄ lonahtem-AFMD 01 ε 560,1–= × 01 3– Ñ2 81,53+Ñ2951,0+ 699,0 001...0 ]1[ ]1[ 52 ε 200,3= × 01 4– Ñ2 12,23+Ñ53130,0+ 499,0 ]301,94,2[ ]101,14,2[ 03 ε 660,3= × 01 4– Ñ2 3,13+Ñ94030,0+ 3399,0 53 ε 349,3= × 01 4– Ñ2 24,03+Ñ94610,0+ 6799,0 04 ε 974,5= × 01 4– Ñ2 01x978,3– 3– 75,92+Ñ 3599,0 55 ε 420,1–= × 01 3– Ñ2 91,72+Ñ3851,0+ 2699,0 ]1[ ]1[ ÃÝ-ÀÔÌÄ GE-AFMD 03 ε 230,2= × 01 6– Ñ3 964,1– × 01 3– Ñ2 + 97,93+Ñ49590,0+ 7899,0 001...0 ]301,39[ ]101,09[ ëîíàòý-ÀÔÌÄ lonahte-AFMD 03 ε 723,2= × 01 4– Ñ2 85,32+Ñ4601,0+ 7899,0 001...0 ]301,39[ ]101,09[ àäîâ-ÃÝÄ retaw-GED 51 ε 311,2–= × 01 3– Ñ2 41,28+Ñ4082,0– 6999,0 001...0 ]63,1[ ]82,1[ 52 ε 799,1–= × 01 3– Ñ2 54,87+Ñ572,0– 1999,0 001...0 ]49,04,1[ ]19,23,1[ 53 ε 567,1–= × 01 3– Ñ2 29,47+Ñ8772,0– 7999,0 001...0 ]2,1[ ]2,1[ ëîíàòý-ÃÝÄ lonahte-GED 52 ε 96,4= × 01 5– Ñ2 72,42+Ñ42260,0+ 5699,0 001...0 ]301,49[ ]101,19[ àäîâ-àçîëèñK retaw-esolyX 5 ε = – 0,68+Ñ703,0 4899,0 61...0 ]13[ ]32[ 01 ε = – 50,48+Ñ8203,0 2999,0 51 ε = – 41,28+Ñ6003,0 1999,0 02 ε = – 82,08+Ñ6503,0 7599,0 52 ε = – 54,87+Ñ3,0 9599,0 03 ε = – 76,67+Ñ8603,0 1499,0 53 ε = – 29,47+Ñ3213,0 8199,0 04 ε = – 22,37+Ñ6023,0 4989,0 àäîâ-àçîòüëàÌ retaw-esotlaM 5 ε 621,2–= × 01 3– Ñ2 0,68+Ñ6952,0– 7899,0 05...0 ]86[ ]36[ 138 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR àäîâ-àçîòüëàÌ retaw-esotlaM 51 ε 226,1–= × 01 3– Ñ2 41,28+Ñ2562,0– 2899,0 05...0 ]86[ ]36[52 ε 724,1–= × 01 3– Ñ2 54,87+Ñ5262,0– 3999,0 53 ε 421,1–= × 01 3– Ñ2 29,47+Ñ6562,0– 1999,0 àäîâ-òèííàÌ retaw-lotinnaM 02 ε 236,1–= × 01 3– Ñ2 82,08+Ñ7321,0– 8899,0 51...0 ]1[ ]1[ 52 ε 164,8–= × 01 3– Ñ2 788,6– × 01 3– 54,87+Ñ 2899,0 05...0 ]29,1[ ]98,1[ 03 ε 553,9–= × 01 4– Ñ2 76,67+Ñ1331,0– 2899,0 02...0 ]1[ ]1[ 04 ε 546,6= × 01 4– Ñ2 22,37+Ñ7861,0– 7999,0 02...0 05 ε 852,2–= × 01 4– Ñ2 29,96+Ñ3451,0– 8999,0 02...0 06 ε 491,1= × 01 3– Ñ2 77,66+Ñ6081,0– 1999,0 02...0 àäîâ-öÀÌ retaw-cAM 5 ε 83,1= × 01 –4Ñ3 – 28,9 × 01 –3Ñ2 + 0,68+Ñ393,0+ 3999,0 08...0 ]62[ ]81[ 01 ε 655,1= × 01 –4Ñ3 – 872,1 × 01 –2Ñ2 + 5,48+Ñ7974,0+ 1999,0 08...0 51 ε 376,1= × 01 4– Ñ3 325,1– × 01 2– Ñ2 + 41,28+Ñ8285,0+ 6999,0 08...0 02 ε 448,1= × 01 4– Ñ3 197,1– × 01 2– Ñ2 + 82,08+Ñ7666,0+ 6999,0 08...0 52 ε 952,4–= × 01 6– Ñ4 549,8+ × 01 4– Ñ3 – – 616,5 × 01 –2Ñ2 54,87+Ñ243,1+ 6599,0 001...0 03 ε 258,2–= × 01 6– Ñ4 324,6+ × 01 4– Ñ3 – 332,4– × 01 2– Ñ2 76,67+Ñ111,1+ 5899,0 001...0 53 ε = – 200,3 × 01 –6Ñ4 382,7+ × 01 –4Ñ3 – – 481,5 × 01 –2Ñ2 29,47+Ñ683,1+ 9999,0 001...0 04 ε 619,2–= × 01 6– Ñ4 227,7+ × 01 4– Ñ3 – 169,5– × 01 2– Ñ2 22,37+Ñ176,1+ 5999,0 001...0 54 ε 110,3–= × 01 6– Ñ4 644,8+ × 01 4– Ñ3 – – 608,6 × 01 –2Ñ2 55,17+Ñ29,1+ 8699,0 001...0 àäîâ-ëîíàòåÌ retaw-lonahteM – 09 ε 129,8= × 01 3– Ñ2 9,391+Ñ361,2– 8589,0 001...45 ]1[ ]1[ – 08 ε 638,7= × 01 3– Ñ2 8,971+Ñ959,1– 789,0 – 07 ε 807,6= × 01 3– Ñ2 9,661+Ñ757,1– 3989,0 – 06 ε 568,2= × 01 3– Ñ2 6,631+Ñ11,1– 9199,0 001...44 – 05 ε 188,2= × 01 3– Ñ2 5,031+Ñ80,1– 8199,0 – 04 ε 771,1–= × 01 3– Ñ2 75,501+Ñ4164,0– 8699,0 001...0 – 03 ε 119,9–= × 01 4– Ñ2 98,001+Ñ4164,0– 899,0 – 02 ε 527,7–= × 01 4– Ñ2 14,69+Ñ8664,0– 6299,0 – 01 ε 782,6–= × 01 4– Ñ2 11,29+Ñ7744,0– 5499,0 ]3,1[ ]501,1[ 0 ε 509,4–= × 01 4– Ñ2 99,78+Ñ3154,0– 6999,0 5 ε 896,6–= × 01 4– Ñ2 0,68+Ñ9324,0– 8999,0 ]47,75,32[ ]17,05,51[ 01 ε 230,3–= × 01 4– Ñ2 50,48+Ñ554,0– 2999,0 ]1[ ]1[ ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 139 Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR àäîâ-ëîíàòåÌ retaw-lonahteM 51 ε 437,4–= × 01 4– Ñ2 41,28+Ñ5524,0– 9999,0 001...0 ]301,24,32,1[ ,43,51,1[ ]101 71 ε = – 78,1 × 01 –4Ñ2 – 93,18+Ñ9364,0 7999,0 ]1[ ]1[ 02 ε 320,2–= × 01 4– 82,08+Ñ1844,0–2Ñ 4799,0 ]301,17,24,1[ ,66,43,1[ ]101 52 ε 105,1–= × 01 4– Ñ2 54,87+Ñ4144,0– 999,0 ,24,14,32,1[ ,201,78,25 ]301 ,43,33,51,1[ ,001,48,44 ]101 03 ε 811,2–= × 01 4– Ñ2 76,67+Ñ7624,0– 3899,0 ,89,24,14,1[ ]301 ,69,43,33,1[ ]101 53 ε 136,2–= × 01 4– Ñ2 29,47+Ñ7314,0– 5899,0 ,24,14,32,1[ ]301 ,43,33,51,1[ ]101 04 ε 152,8–= × 01 5– Ñ2 22,37+Ñ3524,0– 3999,0 ]301,14,1[ ]101,33,1[ 54 ε 290,1–= × 01 4– Ñ2 55,17+Ñ7514,0– 5999,0 ]301,14,32[ ]101,33,51[ 05 ε 710,1–= × 01 3– Ñ2 29,96+Ñ5773,0– 3799,0 ]301,03,1[ ]101,22,1[ 55 ε 387,9= × 01 5– Ñ2 23,86+Ñ3914,0– 0,1 ]301,32[ ]101,51[ 06 ε 27,4= × 01 4– Ñ2 77,66+Ñ5254,0– 4999,0 ]301,2,1[ ]101,2,1[ ÎÑÌÄ-ëîíàòåÌ OSMD-lonahteM 02 ε 10,2= × 01 –5Ñ3 – 858,3 × 01 –3Ñ2 + 53,74+Ñ86240,0+ 2999,0 001...0 ]8[ ]76[ àäîâ-àíèâå÷îÌ retaw-aerU 81 ε 885,3–= × 01 2– Ñ2 10,18+Ñ9622,0+ 9699,0 5,9...6,1 ]1[ ]1[ 02 ε 278,1= × 01 3– Ñ2 82,08+Ñ9015,0+ 6999,0 84...0 ]76,1[ ]26,1[ 52 ε 351,1= × 01 3– Ñ2 54,87+Ñ1235,0+ 0,1 82...0 ]64,1[ ]83,1[ àäîâ-ÀÔÌ retaw-AFM 52 ε 894,2= × 01 6– Ñ4 680,3– × 01 4– Ñ3 + 404,1+ × 01 2– Ñ2 54,87+Ñ4841,0+ 6999,0 001...0 ]73[ ]92[ 002-ÃÝÏ – àäîâ 002-GEP – retaw 52 ε = – 726,2 × 01 –3Ñ2 – 54,87+Ñ613,0 9899,0 001...0 ]49,29,35[ ]19,98,54[ 003-ÃÝÏ – àäîâ 003-GEP – retaw 52 ε 297,2–= × 01 3– Ñ2 54,87+Ñ7823,0– 2699,0 001...0 ]49,26,35[ ]19,65,54[ 004-ÃÝÏ – àäîâ 004-GEP – retaw 52 ε 487,2–= × 01 3– Ñ2 54,87+Ñ1463,0– 9699,0 001...0 ]49,26[ ]19,65[ 006-ÃÝÏ – àäîâ 006-GEP – retaw 52 ε 339,1–= × 01 3– Ñ2 54,87+Ñ6854,0– 1899,0 001...0 ]49,26,35[ ]19,65,54[ 002-ÃÝÏ – ëîíàòý 002-GEP – lonahte 52 ε 716,2–= × 01 4– Ñ2 72,42+Ñ50810,0– 9399,0 001...0 ]49[ ]19[ 003-ÃÝÏ – ëîíàòý 003-GEP – lonahte 52 ε 240,3–= × 01 4– Ñ2 72,42+Ñ30040,0– 2699,0 001...0 ]49[ ]19[ 004-ÃÝÏ – ëîíàòý 004-GEP – lonahte 52 ε 525,3–= × 01 4– Ñ2 72,42+Ñ6750,0– 8099,0 001...0 ]88[ ]58[ 006-ÃÝÏ – ëîíàòý 006-GEP – lonahte 52 ε =– 604,4 × 01 –4Ñ2 – 72,42+Ñ38060,0 6699,0 001...0 ]49[ ]19[ àäîâ-àçîáèÐ retaw-esobiR 5 ε 402,6–= × 01 3– Ñ2 0,68+Ñ1491,0– 9699,0 61...0 ]13[ ]32[01 ε 987,7–= × 01 3– Ñ2 50,48+Ñ4581,0– 7699,0 51 ε 710,1–= × 01 2– Ñ2 41,28+Ñ2381,0– 2699,0 140 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR àäîâ-àçîáèÐ retaw-esobiR 02 ε 951,1–= × 01 2– Ñ2 82,08+Ñ4002,0– 6699,0 61...0 ]13[ ]32[ 52 ε 522,1–= × 01 2– Ñ2 54,87+Ñ5822,0– 4499,0 03 ε = – 13,1 × 01 –2Ñ2 – 76,67+Ñ4882,0 4599,0 53 ε 960,1–= × 01 2– Ñ2 29,47+Ñ7224,0– 8699,0 04 ε 56,5–= × 01 3– Ñ2 22,37+Ñ4536,0– 6989,0 àäîâ-àçîðàõàÑ retaw-esorcuS 01 ε 431,9–= × 01 4– Ñ2 50,48+Ñ7442,0– 0,1 04...0 ]1[ ]1[ 02 ε 386,7–= × 01 5– Ñ3 413,4+ × 01 3– Ñ2 – – 82,08+Ñ3803,0 6799,0 08...0 ]36,21,1[ ]75,4,1[ 22 ε 932,1–= × 01 2– Ñ2 45,97+Ñ921,0– 9699,0 41...0 ]37[ ]07[ 52 ε 664,1–= × 01 3– Ñ2 54,87+Ñ412,0– 4799,0 06...0 ]36,21,1[ ]75,4,1[ 03 ε 113,2–= × 01 3– Ñ2 76,67+Ñ8571,0– 7699,0 07...0 53 ε 295,2–= × 01 3– Ñ2 29,47+Ñ3802,0– 6199,0 52...0 ]11[ ]3[ 04 ε 656,2–= × 01 3– Ñ2 22,37+Ñ4051,0– 8499,0 08...0 ]1[ ]1[ 54 ε 407,4–= × 01 3– Ñ2 55,17+Ñ8941,0– 9699,0 52...0 ]11[ ]3[ 05 ε 720,2–= × 01 3– Ñ2 29,96+Ñ4271,0– 799,0 08...0 ]1[ ]1[ 06 ε = – 473,3 × 01 –5Ñ3 486,1+ × 01 –3Ñ2 – – 77,66+Ñ1352,0 599,0 09...0 07 ε 618,1–= × 01 5– Ñ3 831,5+ × 01 4– Ñ2 – 57,36+Ñ2932,0– 9599,0 09...0 08 ε = – 809,1 × 01 –5Ñ3 163,1+ × 01 –3Ñ2 – – 88,06+Ñ5182,0 3599,0 09...0 09 ε 652,3–= × 01 5– Ñ3 690,3+ × 01 3– Ñ2 – – 31,85+Ñ2013,0 6599,0 09...0 59 ε 996,1–= × 01 3– Ñ2 8,65+Ñ4231,0– 7999,0 09...0 001 ε 90,4–= × 01 4– Ñ2 15,55+Ñ9352,0– 7999,0 07...0 àäîâ-òèáðîÑ retaw-lotibroS 0 ε 132,1= × 01 3– Ñ2 99,78+Ñ4114,0– 1789,0 07...0 ]59[ ]29[ 5 ε 7,1= × 01 –3Ñ2 – 0,68+Ñ7644,0 7789,0 07...0 01 ε 534,4= × 01 3– Ñ2 50,48+Ñ7416,0– 2499,0 07...0 51 ε =– 962,3 × 01 –4Ñ3 207,3+ × 01 –2Ñ2 – – 41,28+Ñ493,1 7899,0 06...0 02 ε 201,3–= × 01 4– Ñ3 573,3+ × 01 2– Ñ2 – – 82,08+Ñ352,1 1699,0 06...0 52 ε 700,4–= × 01 4– Ñ3 290,4+ × 01 2– Ñ2 – – 54,87+Ñ493,1 4599,0 05...0 àäîâ-àçîëàãåðÒ retaw-esolaherT 5 ε 118,1–= × 01 3– Ñ2 0,68+Ñ6022,0– 9899,0 05...0 ]86[ ]36[ 51 ε 773,1–= × 01 3– Ñ2 41,28+Ñ1412,0– 3999,0 05...0 52 ε 658,9–= × 01 4– Ñ2 54,87+Ñ2522,0– 1699,0 05...0 53 ε 206,7–= × 01 4– Ñ2 29,47+Ñ6132,0– 7599,0 05...0 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 141 Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR àäîâ-ÃÝÒ retaw-GET 51 ε 184,2–= × 01 3– Ñ2 41,28+Ñ7223,0– 999,0 001...0 ]1[ ]1[ 52 ε 935,2–= × 01 3– Ñ2 54,87+Ñ7292,0– 5999,0 001...0 ]04,1[ ]23,1[ 53 ε 323,2–= × 01 3– Ñ2 29,47+Ñ5292,0– 2999,0 001...0 ]2,1[ ]2,1[ àäîâ-ëîíåÔ retaw-lonehP 07 ε 345,1–= × 01 3– Ñ2 78,33+Ñ13490,0– 1999,0 001...04 ÀÔ – ÄÏ-2,1 AF – DP-2,1 03 ε 86,82+Ñ6087,0= 7999,0 001...0 ]29[ ]98[ àäîâ-ÀÔ retaw-AF 52 ε 790,4–= × 01 5– Ñ3 555,3+ × 01 3– Ñ2 + 54,87+Ñ3663,0+ 6699,0 001...0 ]25,73,1[ ]44,92,1[ 03 ε 446,5–= × 01 5– Ñ3 853,5+ × 01 3– Ñ2 + 76,67+Ñ5133,0+ 7899,0 001...0 ]29[ ]98[ íèðåöèëã-ÀÔ lorecylg-AF 03 ε 825,2–= × 01 3– Ñ2 +Ñ9119,0+ 80,14 3999,0 001...0 ÃÝÄ-ÀÔ GED-AF 03 ε 799,1–= × 01 3– Ñ2 99,93+Ñ9968,0+ 4999,0 001...0 ÎÑÌÄ-ÀÔ OSMD-AF 03 ε 721,1= × 01 3– Ñ2 68,54+Ñ3994,0+ 6999,0 001...0 ÀÔÌÄ-ÀÔ AFMD-AF 03 ε 78,1= × 01 3– Ñ2 54,63+Ñ1715,0+ 7999,0 001...0 ]29,09[ ]98,78[ ëîíàòåì-ÀÔ lonahtem-AF 03 ε 509,1= × 01 3– Ñ2 3,13+Ñ9175,0+ 5999,0 001...0 ]29[ ]98[ ÀÔ – 002-ÃÝÏ AF – 002-GEP 03 ε 73,91+Ñ7178,0= 5999,0 001...0 ÀÔ – 003-ÃÝÏ AF – 003-GEP 03 ε 20,41+Ñ7819,0= 999,0 001...0 ÀÔ – 004-ÃÝÏ AF – 004-GEP 03 ε 951,8= × 01 4– Ñ2 74,21+Ñ8458,0+ 1999,0 001...0 ÀÔ – 006-ÃÝÏ AF – 006-GEP 03 ε 853,7= × 01 4– Ñ2 56,01+Ñ3088,0+ 3999,0 001...0 ëîíàòý-ÀÔ lonahte-AF 03 ε 468,4= × 01 3– Ñ2 85,32+Ñ4943,0+ 8999,0 001...0 ÃÝ-ÀÔ GE-AF 03 ε 827,1–= × 01 3– Ñ2 97,93+Ñ4548,0+ 7999,0 001...0 àäîâ-àçîòêóðÔ retaw-esotcurF 5 ε 740,1–= × 01 3– Ñ2 0,68+Ñ1542,0– 7999,0 81...0 ]13[ ]32[ 01 ε 282,1–= × 01 3– Ñ2 50,48+Ñ8622,0– 8999,0 81...0 51 ε 594,1–= × 01 3– Ñ2 41,28+Ñ6712,0– 6999,0 81...0 02 ε 500,1–= × 01 3– Ñ2 82,08+Ñ2912,0– 8899,0 81...0 52 ε 942,1–= × 01 3– Ñ2 54,87+Ñ9602,0– 2999,0 81...0 03 ε 565,1–= × 01 3– Ñ2 76,67+Ñ6991,0– 7999,0 81...0 53 ε 556,1–= × 01 3– Ñ2 29,47+Ñ881,0– 1999,0 81...0 04 ε 267,1–= × 01 3– Ñ2 22,37+Ñ7481,0– 1599,0 02...0 ]13,21[ ]32,4[ ëîíàòåì-ÔÕ lonahtem-FC 02 ε 619,1–= × 01 3– Ñ2 61,33+Ñ40290,0– 6999,0 001...0 ]1[ ]1[ 142 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ,àðóòàðåïìåÒ Ñ° ,erutarepmeT Ѱ åèíåíâàðÓ noitauqE R2 íîçàïàèÄ ,éèöàðòíåöíîê %.ññàì noitartnecnoC w/w%,egnar êèí÷îòñÈ secnerefeR ëîíàòý-ÔÕ lonahte-FC 81 ε 690,1–= × 01 3– Ñ2 62,52+Ñ58590,0– 5799,0 001...0 ]1[ ]1[52 ε 970,1–= × 01 3– Ñ2 72,42+Ñ19780,0– 899,0 àäîâ-ëîíàòÝ retaw-lonahtE 5- ε 307,1= × 01 4– Ñ2 30,09+Ñ8236,0– 5799,0 0 ε 313,2= × 01 4– Ñ2 99,78+Ñ4826,0– 1899,0 ]301,11,1[ ]101,3,1[ 5 ε 415,3–= × 01 4– Ñ2 0,68+Ñ1316,0– 8899,0 ]42[ ]61[ 01 ε 842,7= × 01 4– Ñ2 50,48+Ñ4946,0– 2499,0 ]301,11,1[ ]101,3,1[ 51 ε 561,2= × 01 4– Ñ2 41,28+Ñ3706,0– 3599,0 ]301,42,11[ ]101,61,3[ 02 ε 247,6= × 01 4– Ñ2 82,08+Ñ326,0– 5699,0 ,55,24,7,1[ ]301,17 ,95,84,43,1[ ]101,66 22 ε 479,4= × 01 4– Ñ2 65,97+Ñ2506,0– 9999,0 ]37[ ]07[ 52 ε 315,7= × 01 4– Ñ2 54,87+Ñ7026,0– 2899,0 ,24,42,11,1[ ,88,78,25,44 ]301,401 ,43,61,3,1[ ,58,48,44,63 ]201,101 03 ε 25,7= × 01 4– Ñ2 76,67+Ñ6016,0– 999,0 ]301,89,1[ ]101,69,1[ 23 ε 583,5= × 01 –4Ñ2 – 69,57+Ñ2775,0 8999,0 ]301,55[ ]101,84[ 53 ε 22,7= × 01 4– Ñ2 29,47+Ñ5106,0– 799,0 ]301,42,11,1[ ]101,61,3,1[ 04 ε 794,8= × 01 4– Ñ2 22,37+Ñ6106,0– 3899,0 ]301,24,11,1[ ]101,43,3,1[ 54 ε 765,9= × 01 4– Ñ2 55,17+Ñ2906,0– 7299,0 ]301,11,1[ ]101,3,1[ 05 ε 86,9= × 01 4– Ñ2 29,96+Ñ5595,0– 2899,0 ]301,03,42,1[ ,22,61,1[ ]101 55 ε 350,1= × 01 3– Ñ2 23,86+Ñ3195,0– 2999,0 ]301,1[ ]101,1[06 ε 307,9= × 01 –4Ñ2 – 77,66+Ñ5275,0 1999,0 57 ε 20,1= × 01 –3Ñ2 – 3,26+Ñ9155,0 3999,0 08 ε 758,8= × 01 4– Ñ2 88,06+Ñ635,0– 5999,0 ]301,101,1[ ]101,99,1[ àäîâ-ÃÝ retaw-GE 51 ε 579,1–= × 01 3– Ñ2 41,28+Ñ5881,0– 3799,0 ]04,1[ ]23,1[ 02 ε 498,1–= × 01 3– Ñ2 82,08+Ñ4222,0– 5599,0 ,101,77,07[ ]601 ,99,47,56[ ]401 52 ε 918,1–= × 01 3– Ñ2 54,87+Ñ502,0– 5399,0 ,27,04,02,1[ ]601,49,08 ,86,23,21,1[ ]401,19,77 03 ε 707,1–= × 01 3– Ñ2 76,67+Ñ6122,0– 5799,0 ]08[ ]77[ 53 ε 244,1–= × 01 3– Ñ2 29,47+Ñ4712,0– 6499,0 ]08,04,1[ ]77,23,1[ 04 ε 226,1–= × 01 3– Ñ2 22,37+Ñ9122,0– 1799,0 ,08,77,07[ ]601 ,77,47,56[ ]401 54 ε 604,1–= × 01 3– Ñ2 55,17+Ñ7032,0– 9999,0 ]08[ ]77[ 05 ε 276,7–= × 01 4– Ñ2 29,96+Ñ2272,0– 2699,0 ]03[ ]22[ 06 ε 211,1–= × 01 3– Ñ2 77,66+Ñ7832,0– 8899,0 ,101,77,07[ ]601 ,99,47,56[ ]401 08 ε 879,7–= × 01 4– Ñ2 88,06+Ñ9142,0– 5999,0 ]601,77,07[ ]401,47,56[ 001 ε 724,5–= × 01 4– Ñ2 15,55+Ñ5342,0– 5999,0 ]601,101,77,07[ ]401,99,47,56[ ëîíàòý-ÃÝ lonahte-GE 52 ε 816,7= × 01 4– Ñ2 72,42+Ñ61290,0+ 9799,0 ]49[ ]19[ ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 143 Ïðîäîëæåíèå òàáëèöû 2 Table 2. (Continued) ðîâòñàÐ noituloS ÿèöàðòíåöíîK , %.ññàì noitartnecnoC , w/w% åèíåíâàðÓ noitauqE R2 íîçàïàèÄ Ñ°,ðóòàðåïìåò erutarepmeT Ѱ,egnar êèí÷îòñÈ secnerefeR àäîâ-lCaN retaw-lCaN 5,0 ε 91,4–= × 01 3– t2 89,97+t55030,0– 6699,0 06...01 ]38[ ]08[ 1 ε 50,5–= × 01 3– t2 63,77+t47630,0– 5799,0 06...01 5,1 ε 587,4–= × 01 3– t2 01x648,7– 3– 66,67+t 499,0 06...01 2 ε 273,1–= × 01 3– t2 87,67+t3651,0– 2899,0 05...01 48,2 ε 341,5–= × 01 4– t2 75,97+t4113,0– 6699,0 06...0 ]1[ ]1[ 37,3 ε 753,1–= × 01 3– t2 91,97+t7653,0– 6599,0 04...0 ]15[ ]34[ üëåã-ðàãà–lCaN )%1( legraga–lCaN )%1( 0 ε 907,3= × 01 4– t2 45,97+t9142,0– 3799,0 06...01 ]38[ ]08[ 5,0 ε 184,1–= × 01 3– t2 34,77+t6631,0– 6599,0 06...01 1 ε 398,6= × 01 4– t2 54,67+t3652,0– 3799,0 06...01 5,1 ε 917,7= × 01 4– t2 44,57+t942,0– 3199,0 06...01 2 ε 483,1= × 01 3– t2 89,37+t8372,0– 3999,0 06...01 íèðåöèëã-lCaN lorecylg-lCaN 55,4 ε 920,1= × 01 2– t2 5,85+t105,0+ 0,1 72–...94– ]1[ ]1[ 51,12 ε 363,6= × 01 3– t2 93,94+t8692,0– 8699,0 22–...05– éûâîíèöèëã–lCaN )Ì2,0(ðåôóá enicylg–lCaN )M2.0(reffub 0 ε 818,1= × 01 5– t4 01x428,3– 3– t3 + t1392,0+ 2 7,591+t31,01– 6799,0 07...02 ]57[ ]27[ 5,0 ε 333,2= × 01 3– t3 t42,0– 2 + 37,43+t122,6+ 0,1 05...02 ]57[ ]27[ éûíòàôñîô–lCaN )Ì50,0(ðåôóá etahpsohp–lCaN )M50.0(reffub 0 ε 873,6–= × 01 4– t2 17,38+Ñ7681,0– 9299,0 56...7 ]18[ ]87[ 5,0 ε 200,1–= × 01 3– t2 90,18+Ñ3431,0– 1399,0 56...7 57,0 ε 940,1–= × 01 3– t2 15,18+Ñ1061,0– 9199,0 56...7 1 ε 121,1–= × 01 3– t2 51,18+Ñ2651,0– 2299,0 56...7 àäîâ-àçîòêàëàà retaw-esotcalaG 84,3 ε 342,78+t6363,0–= 8999,0 04...5 ]13[ ]32[ 27,6 ε 175,68+t663,0–= 8999,0 04...5 57,9 ε 390,68+t2073,0–= 8999,0 04...5 6,21 ε 524,58+t7663,0–= 9999,0 04...5 72,51 ε 399,48+t2093,0–= 9999,0 04...5 87,71 ε 925,48+t973,0–= 9999,0 04...5 àäîâ-íèöèëà retaw-enicylG 33,7 ε 746,9–= × 01 4– t2 8,901+t6123,0– 899,0 05...0 ]1[ ]1[ àäîâ-àçîêþëà retaw-esoculG 84,3 ε 638,68+t5063,0–= 9999,0 04...5 ]13[ ]32[ 27,6 ε 348,58+t6353,0–= 7999,0 57,9 ε 0,58+t7153,0–= 9999,0 6,21 ε = – 343,48+t6353,0 7999,0 72,51 ε = – 575,38+t53,0 7999,0 144 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 Òàáëèöà 3. Óðàâíåíèÿ äëÿ ðàñ÷åòà ñòàòè÷åñêîé äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè ðàñòâîðîâ êðèîïðîòåêòîðîâ â çàâèñèìîñòè îò òåìïåðàòóðû ïðè ôèêñèðîâàííîé êîíöåíòðàöèè; äèñïåðñèè àïïðîêñèìàöèé è äèàïàçîíû êîíöåíòðàöèé ïðèìåíåíèÿ óðàâíåíèé Table 3. Equations to calculate static dielectric permeability for cryoprotective solutions depending on temperature at a fixed concentration; dispersions of approximations and temperature ranges of equation application Ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå Continued on next page ðîâòñàÐ noituloS ÿèöàðòíåöíîK , %.ññàì noitartnecnoC , w/w% åèíåíâàðÓ noitauqE R2 íîçàïàèÄ Ñ°,ðóòàðåïìåò erutarepmeT Ѱ,egnar êèí÷îòñÈ secnerefeR àäîâ-àçîêþëà retaw-esoculG 87,71 ε = – 986,28+t9243,0 5999,0 04...5 ]13[ ]32[ àäîâ-ÎÑÌÄ retaw-OSMD 04 ε = – 336,38+t5483,0 7999,0 53...5 ]47[ ]17[ àäîâ-ÀÔÌÄ retaw-AFMD 55,92 ε = – 65,07+t92,0 7999,0 04...02 ]81[ ]01[ àäîâ-öÀÌ retaw-cAM 37,14 ε 516,8= × 01 –4t2 – 64,79+t7833,0 5199,0 54...5 ]62[ ]81[94,75 ε 9,3= × 01 –3t2 – 6,401+t285,0 999,0 32,08 ε 108,3= × 01 3– t2 5,921+t4168,0– 8999,0 àäîâ-ëîíàòåÌ retaw-lonahteM 43 ε 584,2= × 01 3– t2 20,76+t3923,0– 6889,0 – 81...22 ]02[ ]21[ 05 ε 887,5= × 01 4– t2 18,46+t4653,0– 3099,0 53...5 ]47,14,1[ ]17,33,1[ -ðàãà–àçîðàõàÑ )%1(üëåã legraga–esorcuS )%1( 01 ε 202,2= × 01 5– t3 452,3– × 01 –3t2 + 01x696,1 2– 41,17+t 9399,0 06...01 ]38[ ]08[ 02 ε 392,2= × 01 –4t3 – 864,2 × 01 –2t2 + 75,45+t7347,0 3079,0 03 ε 244,1–= × 01 –4t3 200,1+ × 01 –2t2 – 229,2 × 01 2– 18,35+t 8769,0 04 ε 899,1= × 01 –4t3 – 791,2 × 01 –2t2 + 24,52+t409,0 6699,0 àäîâ-àçîðàõàÑ retaw-esorcuS 5 ε 187,9= × 01 –4t2 – 15,68+t2224,0 8999,0 001...0 ]38,1[ ]08,1[ 01 ε 988,7= × 01 –4t2 – 83,58+t9504,0 9899,0 02 ε 338,6= × 01 –4t2 – 54,28+t1193,0 6699,0 03 ε 311,5= × 01 –4t2 – 23,97+t4863,0 1799,0 – 001...2 04 ε 153,5= × 01 –4t2 – 54,67+t2563,0 1999,0 – 001...3 àäîâ-ÀÔ retaw-AF 14,33 ε = – 8,301+t873,0 7999,0 04...02 ]81[ ]01[ àäîâ-ëîíàòÝ retaw-lonahtE 59 ε 899,2= × 01 3– t2 4,83+t50840,0+ 8999,0 – ...651 – 011 ]05[ ]24[ 99 ε 554,5= × 01 3– t2 43,48+t6877,0+ 3799,0 – ...261 – 911 àäîâ-ÃÝ retaw-GE 02 ε 394,9= × 01 4– t2 39,28+t3024,0– 1999,0 – 001...01 ,28,08,07[ ]601 ,97,77,56[ ]401 03 ε 181,9= × 01 4– t2 7,97+t6114,0– 4999,0 – 001...01 04 ε 727,6= × 01 4– t2 23,47+t4933,0– 6899,0 – 001...02 ]601,08[ ]401,77[ 05 ε 250,1= × 01 3– t2 9,27+t6114,0– 6999,0 – 001...02 ,08,77,07[ ]601,28 ,77,47,56[ ]401,97 06 ε 555,9= × 01 4– t2 0,86+t7873,0– 9799,0 – 001...04 ]601,08[ ]401,77[ 08 ε 32,1= × 01 3– t2 64,55+t2103,0– 3599,0 – 001...51 Ïðîäîëæåíèå òàáëèöû 3 Table 3. (Continued) Ëèòåðàòóðà 1. Àõàäîâ ß.Þ. Äèýëåêòðè÷åñêèå ñâîéñòâà áèíàðíûõ ðàñò- âîðîâ. – Ì.: Íàóêà, 1977. – 400 ñ. 2. Àõàäîâ ß.Þ. Äèýëåêòðè÷åñêèå ñâîéñòâà ÷èñòûõ æèäêîñ- òåé. – Ì.: Èçä–âî ñòàíäàðòîâ, 1972. – 412 ñ. References 1. Akhadov Y.Y. Dielectric Properties of Binary Solutions. Moscow: Nauka; 1977. 2. Akhadov Y.Y. Dielectric Properties of pure liquids. Moscow: Izdatelstvo standartov; 1972. ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 145 3. Æóðàâëåâ À.Â., Ñóñëÿåâ Â.È., Òàðàñåíêî Ï.Ô. Âûáîð ìîäå- ëè äèýëåêòðè÷åñêîé ðåëàêñàöèè âåùåñòâà äëÿ èçìåðåí- íûõ ñïåêòðîâ ñìåñè ìåòèëîâîãî ñïèðòà è âîäû íà îñíî- âå ïðîâåðêè ãèïîòåç // Èçâåñòèÿ âûñøèõ ó÷åáíûõ çàâåäåíèé. Ôèçèêà. – 2010. – Ò. 53, ¹9/3. – Ñ. 279–280. 4. Æóðàâëåâ Â.È., Óñà÷åâà Ò.Ì. Ðàâíîâåñíûå äèýëåêòðè- ÷åñêèå ñâîéñòâà áóòàíäèîëîâ // Âåñòíèê Ìîñêîâñêîãî óíèâåðñèòåòà. Ñåðèÿ: Õèìèÿ. – 2010. – Ò. 51, ¹4. – Ñ. 274– 278. 5. Êàðàïåòÿí Þ.À., Ýé÷èñ Â.Ì. Ôèçèêî-õèìè÷åñêèå ñâîéñòâà ýëåêòðîëèòíûõ íåâîäíûõ ðàñòâîðîâ. – Ì.: Õèìèÿ, 1989. – 256 ñ. 6. Ëèôàíîâà Í.Â., Óñà÷åâà Ò.Ì., Áàõèëèíà Í.Â. è äð. Äèýëåêò- ðè÷åñêèå ñâîéñòâà ñèñòåìû 1,2-ïðîïàíäèîë – áåíçîë // Âåñòíèê Ìîñêîâñêîãî óíèâåðñèòåòà. Ñåðèÿ: Õèìèÿ. – 1998. – Ò. 39, ¹1. – Ñ. 33–36. 7. Ìàðêîâñêèé Þ.Å., Çîðè À.À. Ïðèìåíåíèå ðàäèî÷àñòîòíîãî ìåòîäà äëÿ àíàëèçà êîìïîíåíòíîãî ñîñòàâà æèäêèõ ñìå- ñåé è âîäíûõ ðàñòâîðîâ îðãàíè÷åñêèõ äèýëåêòðèêîâ // Íàóê. ïðàö³ ÄîíÍÒÓ. – 2010. – Âèï. 171. – Ñ. 212–217. 8. Ìîñêàëåö À.Ï. Ðàçðàáîòêà ìîäåëåé íàäìîëåêóëÿðíîé îðãàíèçàöèè è ôèçèêî-õèìè÷åñêèõ ñâîéñòâ æèäêèõ ðàñò- âîðîâ: Àâòîðåô. äèñ. … êàíä. ôèç.-ìàò. íàóê. – Ìîñêâà, 2010. – 29 ñ. 9. Ñïðàâî÷íèê õèìèêà. Ò. 1. / Ïîä. ðåä. Á.Ï. Íèêîëüñêîãî. – Ì. – Ë.: Õèìèÿ, 1966. – 1072 ñ. 10.Ñòàòè÷åñêàÿ äèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü âîäû è âîäÿíîãî ïàðà â ñîñòîÿíèè íàñûùåíèÿ [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] http://twt.mpei.ac.ru/tthb/2/OIVT/ HB_v201/GLAVA3/Table3_6.pdf (11.06.2014). 11.Akode C.G., Kanse K.S., Lokhande M.P. et al. Dielectric relaxa- tion studies of aqueous sucrose in ethanol mixtures using time domain reflectometry // Pramana – J. Phys. – 2004. – Vol. 62, ¹4. – P. 973–981. 12. Alshami A.S. Dielectric properties of biological materials: a physical-chemical approach: A dissertation … PhD. – Washing- ton, 2007. – 173 p. 13.Anopchenko A., Psurek T., VanderHart D. et al. Dielectric study of the antiplasticization of trehalose by glycerol // Phys. Rev. – 2006. – Vol. 74, ¹ 3, Pt. 1 – P. 031501–1–031501–10. 15.Archer D.G., Wang P. The dielectric constant of water and Debye-Hañkel limiting law stopes // J. Phys. Chem. Ref. Data, 1990. – Vol. 19, ¹2. – P. 371–411. 16.Baudot A., Bret J.L. A simple capacitive cell for the measure- ment of liquids dielectric constant under transient thermal con- ditions // CryoLetters. – 2003. – Vol. 24, ¹1. – P. 5–16. 17.Bhat J.I., Manjunatha M.N. Studies on the effect of dielectric constant on the solvation behaviour of citric acid as a function of temperature // Arch. Appl. Sci. Res. – 2011. – Vol. 3, ¹5. – P. 362–380. 18.Bhatti N.K. Heterogeneous electron transfer rate constants of some substituted bipyridinium halides: A dissertation … PhD. – Islamabad, 2002. – 250 p. 19.Bittelli M., Flury M., Roth K. Use of dielectric spectroscopy to estimate ice content in frozen porous media // Water Resour. Res. – 2004. – Vol. 40, ¹4. – P. 1–11. 20.Bolund B.F., Berglund M., Bernhoff H. Dielectric study of water- methanol mixtures for use in pulsed-power water capacitors // J. Appl. Phys. – 2003. – Vol. 93, ¹5. – P. 2895–2899. 21.Bordi F., Cametti C. Colby R.H. Dielectric spectroscopy and conductivity of polyelectrolyte solutions // J. Phys. Condens. Matter. – 2004. – Vol. 16, ¹49. – P. R1423–R1463. 22.Brennan T.V., Clarke S. Spontaneous degradation of polypepti- des at aspartyl and asparaginyl residues: Effects of the solvent dielectric // Protein Sci. – 1993. – Vol. 2, ¹3. – P. 331–338. 23.Bruno T.J., Svoronov P.D.N Handbook of basic tables for che- mical analysis. – Boca Raton: CRC Press, 2010. – 887 p. 24. Buck D.E. The dielectric spectra of ethanol-water mixtures in the microwave region: A dissertation … PhD. – Massachu- setts, 1965. – 71 p. 25.Buckley F., Maryott A.A. Tables of dielectric dispersion data for pure liquids and dilute solutions // US Department of com- 146 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 3. Akode C.G., Kanse K.S., Lokhande M.P. et al. Dielectric relaxa- tion studies of aqueous sucrose in ethanol mixtures using time domain reflectometry. Pramana J Phys 2004; 62(4): 973–981. 4. Alshami A.S. Dielectric properties of biological materials: a physical-chemical approach [dissertation]. Washington state university, 2007. 5. Anopchenko A., Psurek T., VanderHart D. et al. Dielectric study of the antiplasticization of trehalose by glycerol. Phys Rev 2006; 74(3, Pt.1): 1–10. 6. Aragones J.L., MacDowell L.G., Vega C. Dielectric constant of ices and water: a lesson about water interactions. J Phys Chem. A. 2011; 115(23): 5745–5758. 7. Archer D.G., Wang P. The dielectric constant of water and Debye-Hañkel limiting law stopes. J Phys Chem Ref Data 1990; 19(2): 371–411. 8. Baudot A., Bret J.L. A simple capacitive cell for the measurement of liquids dielectric constant under transient thermal conditions. CryoLetters 2003; 24(1): 5–16. 9. Bhat J.I., Manjunatha M.N. Studies on the effect of dielectric constant on the solvation behaviour of citric acid as a function of temperature. Arch Appl Sci Res 2011; 3(5): 362–380. 10.Bhatti N.K. Heterogeneous electron transfer rate constants of some substituted bipyridinium halides [dissertation]. Islamabad, 2002. 11.Bittelli M., Flury M., Roth K. Use of dielectric spectroscopy to estimate ice content in frozen porous media. Water Resour Res 2004; 40(4): 1–11. 12.Bolund B.F., Berglund M., Bernhoff H. Dielectric study of water- methanol mixtures for use in pulsed-power water capacitors. J Appl Phys 2003; 93(5): 2895–2899. 13.Bordi F., Cametti C. Colby R.H. Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J Phys Condens Matter 2004; 16(49): R1423–R1463. 14.Brennan T.V., Clarke S. Spontaneous degradation of polypep- tides at aspartyl and asparaginyl residues: Effects of the solvent dielectric. Protein Sci 1993; 2(3): 331–338. 15.Bruno T.J., Svoronov P.D.N Handbook of basic tables for chemical analysis. Boca Raton: CRC Press; 2010. 16.Buck D.E. The dielectric spectra of ethanol-water mixtures in the microwave region [dissertation]. Massachusetts Institute of Technology, 1965. 17.Buckley F., Maryott A.A. Tables of dielectric dispersion data for pure liquids and dilute solutions. US Department of commerce. National Bureau of Standart. Circular 589. Available from: www.boulder.nist.gov/div838/SelectedPubs/NBS%20 Circular%20589.pdf] [cited 5.06.2014]. 18.Butler R.A. Electrolyte behavior in solvents of high dielectric constant [dissertation]. University of Florida, 1978. 19.Caleman C., van Maaren P.J., Hong M. et al. Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 2012; 8(1): 61–74. 20.Chaudhari H.C., Chaudhari A., Mehrotra S.C. Dielectric study of aqueous solutions of alanine and phenylalanine. J Chin Chem Soc 2005; 52(1): 5–10. 21.Chavan S., Kumbharkhane A., Mehrotra S. Microwave dielect- ric behaviour of 1,2-propanediol – water mixture studied using time domain reflectometry technique. J Chin Chem Soc 2007; 54(6): 1457–1462. 22.Chen H.-I., Chang H.-Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids and Surfaces A: Physicochem Eng Aspects 2004; 242(1–3): 61–69. 23.Chen Y.-J., Zhuo K.-L., Kang L. Dielectric constants for binary saccharide-water solutions at 278.15–313.15 K. Acta Phys Chim Sin 2008; 24(1): 91–96. 24.Chitra R., Smith P.E. Molecular dynamics simulations of the properties of cosolvent solutions. J Phys Chem 2000; 104(24): 5854–5864. 25.Cohn E.J., McMeekin T.L., Blanchard M.H. Studies in the physi- cal chemistry of amino acids, peptides, and related substan- merce. National Bureau of Standart. Circular 589 [Ýëåêòðîí- íûé äîêóìåíò] // [âåá-ñàéò] www.boulder.nist.gov/div838/ SelectedPubs/NBS%20Circular%20589.pdf (5.06.2014). 26.Butler R.A. Electrolyte behavior in solvents of high dielectric cons- tant: A dissertation…PhD. University of Florida. – 1978. – 124 p. 27.Caleman C., van Maaren P.J., Hong M. et al. Force field bench- mark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volu- metric expansion coefficient, and dielectric constant // J. Chem. Theory Comput. – 2012. – Vol. 8, ¹1. – P. 61–74. 28.Chaudhari H.C., Chaudhari A., Mehrotra S.C. Dielectric study of aqueous solutions of alanine and phenylalanine // J. Chin. Chem. Soc. – 2005. – Vol. 52, ¹1. – P. 5–10. 29.Chavan S., Kumbharkhane A., Mehrotra S. Microwave dielect- ric behaviour of 1,2-propanediol-water mixture studied using time domain reflectometry technique // J. Chin. Chem. Soc. – 2007. – Vol. 54, ¹6. – P. 1457–1462. 30.Chen H.-I., Chang H.-Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents // Colloids and Surfaces A: Physicochem. Eng. Aspects. – 2004. – Vol. 242, ¹1–3. – P. 61–69. 31.Chen Y.-J., Zhuo K.-L., Kang L. Dielectric constants for binary saccharide-water solutions at 278.15–313.15 K // Acta Phys. Chim. Sin. – 2008. – Vol. 24, ¹1. – P. 91–96. 32.Chitra R., Smith P.E. Molecular dynamics simulations of the properties of cosolvent solutions // J. Phys. Chem. – 2000. – Vol. 104, ¹24. – P. 5854–5864. 33. Cohn E.J., McMeekin T.L., Blanchard M.H. Studies in the physical chemistry of amino acids, peptides, and related sub- stances. XI. The solubility of cystine in the presence of ions and another dipolar ion // J. Gen. Physiol. – 1938. – Vol. 21, ¹5. – P. 651–663. 34.Cole R.H., Davidson D.W. Dielectric properties of trimethylene glycol // Brown university, ONR Contract Nonr–562( 03 ), NR– 051–284, 1953. – P. 28–36. 35.Common organic solvents: table of properties [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] www.wuestgroup.com/Solvent%20 Properties.pdf (16.04.2014). 36.CRC Handbook of chemistry and physics. – Boca Raton: CRC Press, 2005. – 2661 p. 37. Daneshvari D. Investigation of binary polar solvent mixtures, solubilized ferroelectric salts and Paraffin–based derivatives using dielectric spectroscopy: A dissertation … PhD. – Basel, 2007. – 294 p. 38.Davidson D.W. The dielectric properties of methanol and methanol-d // Can. J. Chem. – 1957. – Vol. 35, ¹5. – P. 458–473. 39.Dielectric constant of common materials [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] www.flowmeterdirectory.com/ dielectric_constant_01.html (16.07.2014). 40.Douheret G., Morenas M. Thermodynamic and physical beha- viour of some water + polyethyleneglycol mixtures. II. Dielectric properties // Can. J. Chem. – 1979. – Vol. 57, ¹6. – P. 608–613. 41.Emara M.M., Shehata H.A., Elnhaily S. Thermodynamics of ion-association of NaClO4 in aqueous-methanol and aqueous- glycerol using conductance measurement // J. Chin. Chem. Soc. – 1988. – Vol. 35, ¹ 5. – P. 337–344. 42.Experimental aspects [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] http://prr.hec.gov.pk/chapters/346S-3.pdf (28.06.2014). 43.Fabbri A., Fen-Chong T., Coussy O. Dielectric capacity, liquid water content, and pore structure of thawing-freezing mate- rials // Cold Reg. Sci. Technol. – 2006. – Vol. 44, ¹1. – P. 52–66. 44.Faraji M., Farajtabar A., Gharib F. Determination of water- ethanol mixtures autoprotolysis constants and solvent effect // J. Appl. Chem. Res. – 2009. – Vol 9, ¹1. – P. 7–12. 45.Farjtabar A. Application of electrochemistry to determination of transfer gibbs energies and autoprotolysis constants for aqueous mixtures of dimethyl sulfoxide // J. Appl. Chem. Res. – 2012. – Vol. 20, ¹1. – P. 28–35. 46.Feng Y., Yu Z.-W., Quinn P.J. Effect of urea, dimethylurea, and tetramethylurea on the phase behavior of dioleoylphosphatidyl- ethanolamine // Chem. Phys. Lipids. – 2002. – Vol. 114, ¹2. – P. 149–157. ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 147 ces. XI. The solubility of cystine in the presence of ions and another dipolar ion. J. Gen. Physiol. 1938; 21(5): 651–663. 26.Cole R.H., Davidson D.W. Dielectric properties of trimethylene glycol. Brown university, ONR Contract Nonr-562( 03 ), NR- 051–284, 1953. p. 28–36. 27.Common organic solvents: table of properties Available from: www.wuestgroup.com/Solvent%20Properties.pdf [cited 16.04.2014]. 28.CRC Handbook of chemistry and physics. Boca Raton: CRC Press, 2005. 29.Daneshvari D. Investigation of binary polar solvent mixtures, solubilized ferroelectric salts and Paraffin-based derivatives using dielectric spectroscopy [dissertation]. Basel, 2007. 30.Davidson D.W. The dielectric properties of methanol and methanol-d. Can J Chem 1957; 35(5): 458–73. 31.Dielectric constant of common materials Available from: www.flowmeterdirectory.com/dielectric_constant_01.html [cited 16.07.2014]. 32.Douheret G., Morenas M. Thermodynamic and physical beha- viour of some water + polyethyleneglycol mixtures. II. Dielectric properties. Can J Chem 1979; 57(6): 608–613. 33.Emara M.M., Shehata H.A., Elnhaily S. Thermodynamics of ion-association of NaClO4 in aqueous-methanol and aqueous- glycerol using conductance measurement. J Chin Chem Soc 1988; 35(5): 337–344. 34.Experimental aspects Available from: http://prr.hec.gov.pk/ chapters/346S-3.pdf (accessed on 28.06.2014). 35.Fabbri A., Fen-Chong T., Coussy O. Dielectric capacity, liquid water content, and pore structure of thawing-freezing mate- rials. Cold Reg Sci Technol 2006; 44(1): 52–66. 36.Faraji M., Farajtabar A., Gharib F. Determination of water- ethanol mixtures autoprotolysis constants and solvent effect. J Appl Chem Res 2009; 9(1): 7–12. 37.Farjtabar A. Application of electrochemistry to determination of transfer gibbs energies and autoprotolysis constants for aqueous mixtures of dimethyl sulfoxide. J Appl Chem Res 2012; 20(1): 28–35. 38.Feng Y., Yu Z.-W., Quinn P.J. Effect of urea, dimethylurea, and tetramethylurea on the phase behavior of dioleoylphosphatidyl- ethanolamine. Chem Phys Lipids 2002; 114(2): 149–157. 39.Gaiduk V.I., TseitlinB.M., Vij J.K. Orientational/translational relaxation in aqueous electrolyte solutions : a molecular model for microwave/far-infrared ranges. Phys Chem Chem Phys 2001; 3(4): 523–534. 40.Gavish N., Promislow K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration Available from: http://arxiv.org/pdf/1208.5169v1.pdf [cited 29.06.2014]. 41.Gomaa E.A., Al-Jahdali B.A.M. Electrochemical studies on the interaction of cadmium ion with kryptofix 22 in MeOH-DMF solutions at different temperatures. Sci Technol 2012; 2(4): 66–76. 42.Hassion F.X., Cole R.H. Dielectric properties of liquid ethanol and 2-propanol. Brown university, ONR Contract Nonr-562(03), NR-051-284: p. 1–27. 43.Hasted J.B., Ritson D.M., Collie C.H. Dielectric properties of aque- ous ionic solutions. Parts I and II. J Chem Phys 1948; 16(1): 1–21. 44.Hernandez-Luis F., Galleguillos-Castro H., Esteso M.A. Activity coefficients of NaF in aqueous mixtures with ε-increasing co- solvent: formamide-water mixtures at 298.15K. Fluid Phase Equilibr 2005; 227(2): 245–253. 45.Hernandez-Perni M.E. A Contribution to the understanding of per- colation phenomena in binary liquids [dissertation]. Basel, 2004. 46.Hobbs M.E., Jhon M.S., Eyring H. The dielectric constant of liquid water and various forms of ice according to significant structure theory. PNAS 1966; 56(1): 31–38. 47.Karapetyan Y.A., Eychis V. Physical-chemical properties of the electrolyte non-aqueous solutions. Moscow: Khimia; 1989. 48. Khalil M.I., Al-Resayes S.I. The role of dielectric constant in sodium chloride solution chemistry: Magnitude of super saturation. Int J Phys Sci 2012; 7(4): 578–583. 49.Knecht L.A. N-methylacetamide: purification and tests for purity. Pure Appl Chem 1971; 27(1–2): 281–290. 47.Gaiduk V.I., TseitlinB.M., Vij J.K. Orientational/translational rela- xation in aqueous electrolyte solutions : a molecular model for microwave/far-infrared ranges // Phys. Chem. Chem. Phys. – 2001. – Vol. 3, ¹4. – P. 523–534. 48.Gavish N., Promislow K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] http://arxiv.org/pdf/1208.5169v1.pdf (29.06.2014). 49.Gomaa E.A., Al-Jahdali B.A.M. Electrochemical studies on the interaction of cadmium ion with kryptofix 22 in meoh-dmf solu- tions at different temperatures // Sci. Technol. – 2012. – Vol. 2, ¹4. – P. 66–76. 50.Hassion F.X., Cole R.H. Dielectric properties of liquid ethanol and 2-propanol // Brown university, ONR contract nonr- 562(03), NR–051. – 284. – P. 1–27. 51.Hasted J.B., Ritson D.M., Collie C.H. Dielectric properties of aqueous ionic solutions. Parts I and II // J. Chem. Phys. – 1948. – Vol. 16, ¹1. – P. 1–21. 52.Hernandez-Luis F., Galleguillos-Castro H., Esteso M.A. Activity coefficients of NaF in aqueous mixtures with ε-increasing co- solvent: formamide-water mixtures at 298.15K // Fluid Phase Equilibr. – 2005. – Vol. 227, ¹2. – P. 245–253. 53.Hernandez-Perni M.E. A Contribution to the understanding of percolation phenomena in binary liquids: A dissertation … PhD. – Basel, 2004. – 193 p. 54.Hobbs M.E., Jhon M.S., Eyring H. The dielectric constant of liquid water and various forms of ice according to significant structure theory // PNAS. – 1966. – Vol. 56, ¹1. – P. 31–38. 55.Khalil M.I., Al-Resayes S.I. The role of dielectric constant in sodium chloride solution chemistry: Magnitude of super satu- ration // Int. J. Phys. Sci. – 2012. – Vol. 7, ¹4. – P. 578–583. 56.Knecht L.A. N-methylacetamide: purification and tests for purity // Pure Appl. Chem. – 1971. – Vol. 27, ¹1–2. – P. 281–290. 57.Koizumi N., Hanai T. Dielectric constants of some alcohols at low frequencies // B. Inst. Chem. Res. – 1955. – Vol. 33, ¹1.– P. 14–20. 58.Koizumi N., Hanai T. Dielectric properties of polyethylene gly- cols: dielectric relaxation in solid state // B. Inst. Phys. Res. – 1964. – Vol. 42, ¹2–3. – P. 115–127. 59.Lee J.M., Jhon M.S., Eyring H. Significant structure theory applied to electrolyte solution // PNAS. – 1979. – Vol. 76, ¹11. – P. 5421–5423. 60.Lu Z., Manias E., Macdonald D.D. et al. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave di- electric relaxation spectroscopy // J. Phys. Chem. A. – 2009. – Vol. 113, ¹44. – P. 12207–12214. 61.Macdonald J.R. Analysis of dielectric and conductive dispersion above Tg in glass-forming molecular liquids // J. Phys. Chem. B. – 2008. – Vol. 112, ¹44. – P. 13684–13694. 62.Mali C.S., Chavan S.D., Kanse K.S. et al. Dielectric relaxation of poly ethylene glycol – water mixtures using time domain technique // Indian J. Pure Appl. Phys. – 2007. – Vol. 45, ¹5. – P. 476–481. 63.Malmberg C.G., Maryott A.A. Dielectric constants of aqueous solutions of dextrose and sucrose // J. Res. Natl. Inst. Stan. – 1950. – Vol. 45, ¹4. – P. 299–303. 64.Malmberg C.G., Maryott A.A. Dielectric constant of water from 0 to 100°C // J. Res. Natl. Inst. Stan. – 1956. – Vol. 56, ¹1. – P. 1–8. 65.Marshall W.L. Dielectric constant of water discovered to be simple function of density over extreme ranges from –35 to +600°C and to 1200 MPa (12000 Atm.), Believed Universal [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] [http://precedings. nature.com/documents/2478/version/1/files/npre20082472- 1.pdf] (22.05.2014). 66.Maryott A.A., Smith E.R. Table of dielectric constants of pure liquids // United States department of commerce, National bureau of standards. Circular 514 [Ýëåêòðîííûé äîêóìåíò] // [âåá- ñàéò] [www.boulder.nist.gov/div838/SelectedPubs/NBS%20 Circular%20514.pdf] (19.05.2014). 67.Mason W.A., Shutt W.J. The dielectric capacity of electrolytes in mixed solvents: ion association in solutions of magnesium 148 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 50.Koizumi N., Hanai T. Dielectric constants of some alcohols at low frequencies. Bull Inst Chem Res 1955; 33(1): 14–20. 51.Koizumi N., Hanai T. Dielectric properties of polyethylene glycols: dielectric relaxation in solid state. Bull Inst Phys Res 1964; 42(2–3): 115–127. 52.Lee J.M., Jhon M.S., Eyring H. Significant structure theory applied to electrolyte solution. PNAS 1979; 76(11): 5421–5423. 53.Lifanova N.V., Usacheva T.M., Bakhilina N.V. et al. Dielectric properties of the propane-1,2-diol-benzene system. Vestnik Moskovskogo universiteta. Khimia. 1998; 39(1): 33–36 54.Lu Z., Manias E., Macdonald D.D. et al. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave di- electric relaxation spectroscopy. J Phys Chem A 2009; 113(44): 12207–12214. 55.Macdonald J.R. Analysis of dielectric and conductive dispersion above tg in glass-forming molecular liquids. J Phys Chem B 2008; 112(44): 13684–13694. 56.Mali C.S., Chavan S.D., Kanse K.S. et al. Dielectric relaxation of poly ethylene glycol – water mixtures using time domain technique. Indian J. Pure Appl. Phys. 2007; 45(5): 476–481. 57.Malmberg C.G., Maryott A.A. Dielectric constants of aqueous solutions of dextrose and sucrose. J Res Natl Inst Stan 1950; 45(4): 299–303. 58.Malmberg C.G., Maryott A.A. Dielectric constant of water from 0 to 100C. J. Res. Natl. Inst. Stan. 1956; 56(1): 1–8. 59.Markovskyy Y.E., Zori A.A. Use of RF-method for the analysis of component composition of solutions and mixtures of liquid organic dielectrics. Scientific Papers of Donetsk National Technical University. 2010; (171): 212–217 60. Marshall W.L. Dielectric constant of water discovered to be simple function of density over extreme ranges from - 35 to + 6000C and to 1200 MPa (12000 Atm.), Believed Universal Available from: http://precedings.nature.com/documents/2478/ version/1/files/npre20082472–1.pdf [cited 22.05.2014]. 61.Maryott A.A., Smith E.R. Table of dielectric constants of pure liquids // United States department of commerce, National bureau of standards. Circular 514 Available from: www.boulder.nist. gov/div838/SelectedPubs/NBS%20Circular%20514.pdf [cited 19.05.2014]. 62.Mason W.A., Shutt W.J. The dielectric capacity of electrolytes in mixed solvents: ion association in solutions of magnesium sulphate. Proc R Soc Lond A 1940; 175(961): 234–253. 63.Matsuoka T., Okada T., Murai K. et al. Dynamics and hydration of trehalose and maltose in concentrated solution. J Mol Liq 2002; 98–99: 317–327. 64.McDuffie G.E., Quinn R.G., Litovitz T.A. Dielectric properties of glycerol-water mixtures. J Chem Phys 1962; 37(2): 239–242. 65.MEGlobal. Ethylene. Available from: www.meglobal.biz/ products-literature [cited 9.06.2014]. 66.Mohsen-Nia M., Amiri H. Measurement and modelling of static dielectric constants of aqueous solutions of methanol, ethanol and acetic acid at T=293.15 K and 91.3 kPa. J Chem Thermodynamics 2013; 57: 67–70. 67.Moscalets A.P. Development of models of supramolecular organization and physico-chemical properties of liquid solutions [dissertation]. Moscow; 2010. 68.Nagarajan R., Wang C.-C. Theory of surfactant aggregation in water/ethylene glycol mixed solvents. Langmuir 2000; 16(12): 5242–5251. 69.Nikolsky B.P. editor. Handbook of chemist. Vol. 1. Moscow- Leningrad: Khimia; 1966. 70.Olmi R., Meriakr V.V., Ignesti A. et al. Dielectric spectroscopy of sugar and ethanol solutions in water for monitoring alcoholic fermentation processes. J Microwave Power E E 2007; 41(3): 38–50. 71.O'Reilly N.J., Magner E. Electrochemistry of cytochrome c in aqueous and mixed solvent solutions: thermodynamics, kinetics, and the effect of solvent dielectric constant. Langmuir 2005; 21(3): 1009–1014. 72.Orellana L. Immobilized enzymes: time temperature indicators for dielectric pasteurization processes [dissertation]. Wa- shington State University, 2004. sulphate // Proc. R. Soc. Lond. A. – 1940. – Vol. 175, ¹961. – P. 234–253. 68.Matsuoka T., Okada T., Murai K. et al. Dynamics and hydration of trehalose and maltose in concentrated solution // J. Mol. Liq. – 2002. – Vol. 98–99. – P. 317–327. 69.McDuffie G.E., Quinn R.G., Litovitz T.A. Dielectric properties of glycerol-water mixtures // J. Chem. Phys. – 1962. – Vol. 37, ¹2. – P. 239–242. 70.MEGlobal. Ethylene [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] [www.meglobal.biz/products-literature] (9.06.2014). 71.Mohsen-Nia M., Amiri H. Measurement and modelling of static dielectric constants of aqueous solutions of methanol, ethanol and acetic acid at T=293.15 K and 91.3 kPa // J. Chem. Ther- modynamics. – 2013. – Vol. 57. – P. 67–70. 72.Nagarajan R., Wang C.-C. Theory of surfactant aggregation in water/ethylene glycol mixed solvents // Langmuir. – 2000. – Vol. 16, ¹12. – P. 5242–5251. 73.Olmi R., Meriakr V.V., Ignesti A. et al. Dielectric spectroscopy of sugar and ethanol solutions in water for monitoring alcoholic fermentation processes // J. Microwave Power E. E. – 2007. – Vol. 41, ¹3. – P. 38–50. 74.O'Reilly N.J., Magner E. Electrochemistry of cytochrome c in aqueous and mixed solvent solutions: thermodynamics, kine- tics, and the effect of solvent dielectric constant // Langmuir. – 2005. – Vol. 21, ¹3. – P. 1009–1014. 75. Orellana L. Immobilized enzymes: time temperature indicators for dielectric pasteurization processes: A dissertation … PhD. Washington State University. – 2004. – 207 p. 76.Pathak R.N., Saxena I., Mishra A. et al. Study of the influence of alkyl chain cation – solvent interactions on water structure in 1,3-butanediol – water mixture by apparent molar volume data // J. Chem. – 2011. – Vol. 8, ¹ 3. – P. 1323–1329. 77.Pelagic meg/water umbilical flushing and storage fluids [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] [www.subseafluids. com/pdfs/Umbilical_Storage_fluids/Pelagic_MEG.Water/ Pelagic_ MEG–Water_Manual.pdf] (7.06.2014). 78.Physical properties of glycerine and its solutions. ACI Science. American Cleaning Institute [Ýëåêòðîííûé äîêóìåíò] // [âåá- ñàéò] [www.aciscience.org/does/Physical_properties_of_ glycerine_and_its–solutions.pdf] (17.05.2014). 79.Pure component properties [Electronic document] // [web-site] [www.ddbst.com/en/EED/PCP/PCPindex.php] (1.07.2014). 80.Rao N.S.S.V.R. Studies on solute-solvent interactions in ionic liquid systems: A dissertation … PhD. – Visakhapatnam, 2013. – 282 p. 81.Raviyan P., Tang J., Orellana L. et al. Physicochemical proper- ties of a time-temperature indicator based on immobilization of aspergillus oryzae – amylase in polyacrylamide gel as affected by degree of cross-linking agent and salt content // J. Food Sci. – 2003. – Vol. 68, ¹7. – P. 2302–2308. 82.Roy R.N., Baker G.E., Hoffman T., Breithaupt E.L., Roy L.N. Standard electrode potentials of silver-silver chloride elect- rodes in 20, 30, and 50% (w/w) ethylene glycol/water from 250C to –200C pK2 and pH* values of the physiological buffer "BES" in 50 % (w/w) ethylene glycol/water // CryoLetters. – 1988. – Vol. 9, ¹ 3. – P. 172–185. 83.Sakai N., Mao W., Koshima Y. et al. A method for developing model food system in microwave heating studies // J. Food Eng. – 2005. – Vol. 66, ¹4. – P. 525–531. 84.Saleh J.M., Khalil M., Hokmat N.A. Investigation of some physical properties of glycerol– water mixtures at 298.15 K // J. Iraqi Chem. Soc. – 1986. – Vol. 11, ¹1. – P. 89–104. 85.Sarkar B.K., Roy M.N., Sinha B. Conductance studies on some alkali metal acetates in aqueous glycerol solutions // Indian J. Chem. – 2009. – Vol. 48A, ¹ 1. – P. 63–68. 86.Sarode A.V., Kumbharkhane A.C. Chain length effect on di- electric relaxation and thermo-physical behaviour of organic polymers through relaxation dynamics using TDR // Int. J. Basic Appl. Res. – 2012. – Special volume. – P. 220–225. 87.Schwer C., Kenndler E. Electrophoresis in fused-silica capil- laries: the influence of organic solvents on the electroosmotic ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 149 73.Pathak R.N., Saxena I., Mishra A. et al. Study of the influence of alkyl chain cation-solvent interactions on water structure in 1,3-butanediol-water mixture by apparent molar volume data. J Chem 2011; 8(3): 1323–1329. 74.Pelagic meg/water umbilical flushing and storage fluids Available from: www.subseafluids.com/pdfs/Umbilical_ Storage_fluids/Pelagic_MEG.Water/Pelagic_MEG-Water_ Manual.pdf [cited 7.06.2014]. 75.Physical properties of glycerine and its solutions. ACI Science. American Cleaning Institute. Available from: www.aciscience. org/does/Physical_propert ies_of_glycer ine_and_its- solutions.pdf] [cited 17.05.2014]. 76.Pure component properties. Available from: [www.ddbst.com/ en/EED/PCP/PCPindex.php] [cited 1.07.2014]. 77.Rao N.S.S.V.R. Studies on solute-solvent interactions in ionic liquid systems [dissertation]. Visakhapatnam, 2013. 78.Raviyan P., Tang J., Orellana L. et al. Physicochemical properties of a time-temperature indicator based on immo- bilization of aspergillus oryzae-amylase in polyacrylamide gel as affected by degree of cross-linking agent and salt content. J Food Sci 2003; 68(7): 2302–2308. 79.Roy R.N., Baker G.E., Hoffman T., Breithaupt E.L., Roy L.N. Standard electrode potentials of silver-silver chloride elect- rodes in 20, 30, and 50 % (w/w) ethylene glycol/water from 250C to -200C pK2 and pH* values of the physiological buffer "BES" in 50 % (w/w) ethylene glycol/water. CryoLetters 1988; 9(3): 172–185. 80.Sakai N., Mao W., Koshima Y. et al. A method for developing model food system in microwave heating studies. J Food Eng 2005; 66(4): 525–531. 81. Saleh J.M., Khalil M., Hokmat N.A. Investigation of some physical properties of glycerol- water mixtures at 298.15 K. J Iraqi Chem Soc 1986; 11(1): 89–104. 82.Sarkar B.K., Roy M.N., Sinha B. Conductance studies on some alkali metal acetates in aqueous glycerol solutions. Indian J Chem 2009; 48A(1): 63–68. 83.Sarode A.V., Kumbharkhane A.C. Chain length effect on dielectric relaxation and thermo-physical behaviour of organic polymers through relaxation dynamics using TDR. Int J Basic Appl Res 2012; Special volume: 220–225. 84.Schwer C., Kenndler E. Electrophoresis in fused-silica capil- laries: the influence of organic solvents on the electroosmotic velocity and the potential. Anal Chem 1991; 63(17): 1801– 1807. 85.Seedher N., Bhatia S. Solubility enhancement of cox-2 inhibitors using various solvent systems. AAPS Pharm Sci Tech 2003; 4(3): 1–9. 86.Sengwa R.J. A compararive dielectric study of ethylene glycol and propylene glycol at different temperatures. J Mol Liq 2003; 108(1–3): 47–60. 87.Sengwa R.J., Choudhary S., Khatri V. Microwave dielectric spec- tra and molecular relaxation in formamide-N,N-dimethylformamide binary mixtures. Spectrochim Acta A 2011; 82(1): 279–282. 88.Sengwa R.J., Khatri V., Choudhary S. Temperature dependent static dielectric constant and viscosity behaviour of glycerol- amide binary mixtures: Characterization of dominant complex structures in dielectric polarization and viscous flow proces- ses. J Mol Liq 2010; 154(2–3): 117–123. 89.Sengwa R.J., Khatri V., Sankhla S. Dielectric behaviour and hydrogen bond molecular interaction study of formamide-dipo- lar solvents binary mixtures. J. Mol. Liq. 2009; 144(1–2): 89–96. 90.Sengwa R.J., Khatri V., Sankhla S. Structure and hydrogen bonding in binary mixtures of N,N-dimethylformamide with some dipolar aprotic and protic solvents by dielectric characteriza- tion. Ind. J. Chem. 2009; 48A(4) 512–519. 91.Sengwa R.J., Sankhla S. Characterization of heterogeneous interaction in binary mixtures of ethylene glycol oligomer with water, ethyl alcohol and dioxane by dielectric analysis. J Mol Liq 2007; 130(1–3): 119–131. 92.Shirgire S.D., Talware R.B., Kadam S.S. et al. Dielectric rela- xation of d-sorbitol-water mixtures using a Time Domain Ref- lectometry Technique. J Mol Liq 2012; 169: 33–36. velocity and the potential // Anal. Chem. – 1991. – Vol. 63, ¹17. – P. 1801–1807. 88.Seedher N., Bhatia S. Solubility enhancement of cox-2 inhibitors using various solvent systems // AAPS Pharm. Sci. Tech. – 2003. – Vol. 4, ¹ 3. – P. 1–9. 89.Sengwa R.J. A compararive dielectric study of ethylene glycol and propylene glycol at different temperatures // J. Mol. Liq. – 2003. – Vol. 108, ¹1–3. – P. 47–60. 90.Sengwa R.J., Choudhary S., Khatri V. Microwave dielectric spectra and molecular relaxation in formamide–N,N–dimethyl- formamide binary mixtures // Spectrochim. Acta A. – 2011. – Vol. 82, ¹1. – P. 279–282. 91.Sengwa R.J., Khatri V., Choudhary S. Temperature dependent static dielectric constant and viscosity behaviour of glycerol- amide binary mixtures: Characterization of dominant complex structures in dielectric polarization and viscous flow proces- ses // J. Mol. Liq. – 2010. – Vol. 154, ¹2–3. – P. 117–123. 92.Sengwa R.J., Khatri V., Sankhla S. Dielectric behaviour and hydrogen bond molecular interaction study of formamide-di- polar solvents binary mixtures // J. Mol. Liq. – 2009. – Vol. 144, ¹1–2. – P. 89–96. 93.Sengwa R.J., Khatri V., Sankhla S. Structure and hydrogen bonding in binary mixtures of N,N-dimethylformamide with some dipolar aprotic and protic solvents by dielectric characteri- zation // Ind. J. Chem. – 2009. – Vol. 48A, ¹4. – P. 512–519. 94.Sengwa R.J., Sankhla S. Characterization of heterogeneous interaction in binary mixtures of ethylene glycol oligomer with water, ethyl alcohol and dioxane by dielectric analysis // J. Mol. Liq. – 2007. – Vol. 130, ¹1–3. – P. 119–131. 95.Shirgire S.D., Talware R.B., Kadam S.S. et al. Dielectric re- laxation of d-sorbitol – water mixtures using a Time Domain Reflectometry Technique // J. Mol. Liq. – 2012. – Vol. 169. – P. 33–36. 96.Synthetic glycerine – dielectric constant [Ýëåêòðîííûé äîêóìåíò] // [âåá-ñàéò] [www.dow.com/optim/optim- advantage/physical-properties/dielectric.htm] (1.06.2014). 97.Tommila E., Murto M.-L. The influence of the solvent on reaction velocity. XXIII. The alkaline hydrolysis of ethyl acetate in dimethyl sulphoxide – water mixtures // Acta Chem. Scand. – 1963. – Vol. 17, ¹7. – P. 1947–1956. 98.Tsai C. S. Spontaneous decarboxylation of oxalacetic acid // Can. J. Chem. – 1967. – Vol. 45, ¹ 8. – P. 873–880. 99.Uematsu M., Franck E.U. Static dielectric constant of water and steam // J. Phys. Chem. Ref. Data. – 1980. – Vol. 9, ¹4. – P. 1291–1306. 100.Undre P.B., Khirade P.W., Rajenimbalkar V.S. et al. Dielectric relaxation in ethylene glycol – dimethyl sulfoxide mixtures as a function of composition and temperature // J. Korean Chem. Soc. – 2012. – Vol. 56, ¹4. – P. 416–423. 101.Wang P., Anderko A. Computation of dielectric constants of solvent mixtures and electrolyte solutions // Fluid Phase Equilibr. – 2001. – Vol. 186, ¹1–2. – P. 103–122. 102.Wear J.O. Apparatus for dielectric constant measurements and measurements for water-methanol mixtures // Arkansas Acad. Sci. Proc. – 1970. – Vol. 24, ¹1. – P. 80–83. 103.Wohlfart C. Static dielectric constants of pure liquids and binary liquid mixtures. – Berlin, New York: Springer Science & Business Media, 2008. – 203 p. 104.Yilmaz H. Excess properties of alcohol-water systems at 298.15 K // Turk. J. Phys. – 2002. – Vol. 26, ¹3. – P. 243–246. 105.Yoon G. Dielectric properties of glucose in bulk aqueous solutions: Influence of electrode polarization and modeling // Biosens. Bioelectron. – 2011. – Vol. 26, ¹5. – P. 2347–2353. 106.Zahn M., Ohki Y., Fenneman D.B. et al. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design // Proc. IEEE. – 1986. – Vol. 74, ¹9. – P. 1182–1236. 150 ïðîáëåìû êðèîáèîëîãèè è êðèîìåäèöèíû problems of cryobiology and cryomedicine òîì/volume 25, ¹/issue 2, 2015 93.Static dielectric constant of water and steam at saturation condition Available from: http://twt.mpei.ac.ru/tthb/2/OIVT/ HB_v201/GLAVA3/Table3_6.pdf [cited 11.06.2014]. 94. Synthetic glycerine – dielectric constant Available from: www.dow.com/optim/optim-advantage/physical-properties/ dielectric.htm [cited 1.06.2014]. 95.Tommila E., Murto M.-L. The influence of the solvent on reaction velocity. XXIII. The alkaline hydrolysis of ethyl acetate in di- methyl sulphoxide – water mixtures. Acta Chem Scand 1963; 17(7): 1947–1956. 96.Tsai C. S. Spontaneous decarboxylation of oxalacetic acid. Can. J. Chem. 1967; 45(8): 873–880. 97.Uematsu M., Franck E.U. Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 1980; 9(4): 1291–1306. 98.Undre P.B., Khirade P.W., Rajenimbalkar V.S. et al. Dielectric relaxation in ethylene glycol – dimethyl sulfoxide mixtures as a function of composition and temperature. J Korean Chem Soc 2012; 56(4): 416–423. 99.Wang P., Anderko A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilibr 2001; 186(1–2): 103–122. 100.Wear J.O. Apparatus for dielectric constant measurements and measurements for water-methanol mixtures. Arkansas Acad Sci Proc 1970; 24(1): 80–83. 101.Wohlfart C. Static dielectric constants of pure liquids and bi- nary liquid mixtures. Berlin, New York: Springer Science & Business Media, 2008. 102.Yilmaz H. Excess properties of alcohol-water systems at 298.15 K. Turk J Phys 2002.; 26(3): 243–246. 103.Yoon G. Dielectric properties of glucose in bulk aqueous so- lutions: Influence of electrode polarization and modeling. Biosens. Bioelectron. 2011; 26(5): 2347–2353. 104.Zahn M., Ohki Y., Fenneman D.B. et al. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design. Proc IEEE 1986; 74(9): 1182–1236. 105.Zhuravlev A.V., Susliaev V.I., Tarasenko P.F. Selection of the model of substance dielectric relaxation for measured spect- rums of the mixture of methyl alcohol and water on the basis of testing hypotheses. Izvestia Vischih Uchebnih Zavedeniy Fizika. 2010; 53(9–3): 279–80. 106.Zhuravlev V.I., Usacheva T.M. Equilibrium dielectric properties of butanediols. Moscow Univ Chem Bull 2010; 65(4): 225– 228.