High-gradient fields in magnets with giant anisotropy

The gradient of strong stray fields generated by various systems of permanent magnets with giant magnetic anisotropy has been calculated. It is shown that the gradient values near singular points are characterized by the dependence ∇H ≈ AMs(1/r), where A is a constant for this system of magnets, Ms...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Samofalov, V.N., Belozorov, D.P., Ravlik, A.G.
Формат: Стаття
Мова:English
Опубліковано: НТК «Інститут монокристалів» НАН України 2008
Назва видання:Functional Materials
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/135276
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:High-gradient fields in magnets with giant anisotropy // V.N. Samofalov, D.P. Belozorov, A.G. Ravlik // Functional Materials. — 2008. — Т. 15, № 3. — С. 407-412. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The gradient of strong stray fields generated by various systems of permanent magnets with giant magnetic anisotropy has been calculated. It is shown that the gradient values near singular points are characterized by the dependence ∇H ≈ AMs(1/r), where A is a constant for this system of magnets, Ms is the saturation magnetization of the magnet material, r is the distance from the singular point. The field gradient in those areas may reach about 10⁶ to 10⁸ Oe/cm. The indicated gradient level is comparable with maximum values achieved in superconducting solenoids supplied with the conical tips produced of soft magnetic material with high Ms. It is established that the volume forces with the specific density of f ≈ 4Ms²/r arise near singular points in the magnet material being in high-gradient field. The mechanical stress in a magnet caused by these forces is characterized by the dependence σ ≈ 4πMs²ln(a/Xmin) and may reach 2-3 kg/mm².