The given level attainment problem and material destruction

In frameworks of percolation scenario of material destruction, the general stochastic model is proposed. It is connected with the so-called attainment problem of the given level E > 0 in the case of independent, equally distributed, non-negative random variables εk, k = 1, 2, ... . The asymptotic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Yastrubenko, M.I.
Формат: Стаття
Мова:English
Опубліковано: НТК «Інститут монокристалів» НАН України 2007
Назва видання:Functional Materials
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/135610
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The given level attainment problem and material destruction / M.I. Yastrubenko // Functional Materials. — 2007. — Т. 14, № 1. — С. 19-23. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-135610
record_format dspace
spelling irk-123456789-1356102018-06-16T03:09:33Z The given level attainment problem and material destruction Yastrubenko, M.I. In frameworks of percolation scenario of material destruction, the general stochastic model is proposed. It is connected with the so-called attainment problem of the given level E > 0 in the case of independent, equally distributed, non-negative random variables εk, k = 1, 2, ... . The asymptotic formula for the probability distribution of random instant of the level E > 0 attainment is proved when the absorbed destructive energy is large. It is done in the case when Eh possess a finite second moment and their sums have an absolutely continuous probability distribution with the bounded density. Remove selected 2007 Article The given level attainment problem and material destruction / M.I. Yastrubenko // Functional Materials. — 2007. — Т. 14, № 1. — С. 19-23. — Бібліогр.: 5 назв. — англ. 1027-5495 http://dspace.nbuv.gov.ua/handle/123456789/135610 en Functional Materials НТК «Інститут монокристалів» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In frameworks of percolation scenario of material destruction, the general stochastic model is proposed. It is connected with the so-called attainment problem of the given level E > 0 in the case of independent, equally distributed, non-negative random variables εk, k = 1, 2, ... . The asymptotic formula for the probability distribution of random instant of the level E > 0 attainment is proved when the absorbed destructive energy is large. It is done in the case when Eh possess a finite second moment and their sums have an absolutely continuous probability distribution with the bounded density. Remove selected
format Article
author Yastrubenko, M.I.
spellingShingle Yastrubenko, M.I.
The given level attainment problem and material destruction
Functional Materials
author_facet Yastrubenko, M.I.
author_sort Yastrubenko, M.I.
title The given level attainment problem and material destruction
title_short The given level attainment problem and material destruction
title_full The given level attainment problem and material destruction
title_fullStr The given level attainment problem and material destruction
title_full_unstemmed The given level attainment problem and material destruction
title_sort given level attainment problem and material destruction
publisher НТК «Інститут монокристалів» НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/135610
citation_txt The given level attainment problem and material destruction / M.I. Yastrubenko // Functional Materials. — 2007. — Т. 14, № 1. — С. 19-23. — Бібліогр.: 5 назв. — англ.
series Functional Materials
work_keys_str_mv AT yastrubenkomi thegivenlevelattainmentproblemandmaterialdestruction
AT yastrubenkomi givenlevelattainmentproblemandmaterialdestruction
first_indexed 2023-10-18T21:12:55Z
last_indexed 2023-10-18T21:12:55Z
_version_ 1796152219709472768