A dispersion equation of the cylindrical ideal wall vacuum cavity sinusoidally corrugated in azimuthal direction. Part I. A physically based method obtaining of the dispersion equation

Dispersive characteristics of a cylindrical cavity with an ideally conducting outer wall has been investigated, whose radius is described by a sinusoidal-periodic dependence on the azimuth angle. From the convergence of the infinite determinant (dispersion equation), we obtain a positive definite bo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Maksimenko, A.V., Tkachenko, V.I., Tkachenko, I.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136174
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A dispersion equation of the cylindrical ideal wall vacuum cavity sinusoidally corrugated in azimuthal direction. Part I. A physically based method obtaining of the dispersion equation / A.V. Maksimenko, V.I. Tkachenko, I.V. Tkachenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 28-33. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Dispersive characteristics of a cylindrical cavity with an ideally conducting outer wall has been investigated, whose radius is described by a sinusoidal-periodic dependence on the azimuth angle. From the convergence of the infinite determinant (dispersion equation), we obtain a positive definite bounded algebraic form, whose properties follow the dispersion characteristics of both a smooth and a corrugated cavity. On the basis of the obtained algebraic form, the variances of the first harmonics of a corrugated cavity with an even number of corrugations are investigated. The obtained analytical dependences correspond quantitatively to the experimental data.