Dissipative generation regime of a system of stationary oscillators

A system of independent oscillators is considered. The interaction of the oscillators occurs through the field of the wave. The initial phases of the oscillators are random. The synchronization of the oscillators by an external field of large amplitude is discussed. The effect of nonlinearity due to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Kuklin, V.M., Litvinov, D.N., Sporov, A.E.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136201
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dissipative generation regime of a system of stationary oscillators / V.M. Kuklin, D.N. Litvinov, A.E. Sporov // Вопросы атомной науки и техники. — 2017. — № 6. — С. 88-90. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A system of independent oscillators is considered. The interaction of the oscillators occurs through the field of the wave. The initial phases of the oscillators are random. The synchronization of the oscillators by an external field of large amplitude is discussed. The effect of nonlinearity due to relativistic effects is taken into account. It is shown that in the regime of synchronization of oscillators by a strong field the nonlinearity does not change the nature of energy exchange between the wave and the oscillators. In the generation regime, energy is exchanged between the oscillators and the growing field. At low loss levels, the process of increasing the amplitude of the field is pro-longed. The efficiency of energy exchange between oscillators and the field reaches 75%. With an increase of the loss level, the process of oscillators’ synchronization changes its character and accelerates, but the amplitude of the field is small. The characteristic time of emission of the system is comparable with the characteristic growth time of the field.