Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient
The stationary problem of the heat radiative conductance is solved at the so-called grey approximation in semitransparent media. Using the geometric optics approximation, the case of small coeficient 0 of the ray reflection from the sample boundary is investigated. The problem is solved in framework...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
НТК «Інститут монокристалів» НАН України
2007
|
Назва видання: | Functional Materials |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/136483 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient / A.V. Kolisnikov // Functional Materials. — 2007. — Т. 14, № 2. — С. 164-170. — Бібліогр.: 2 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-136483 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1364832018-06-17T03:09:02Z Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient Kolisnikov, A.V. The stationary problem of the heat radiative conductance is solved at the so-called grey approximation in semitransparent media. Using the geometric optics approximation, the case of small coeficient 0 of the ray reflection from the sample boundary is investigated. The problem is solved in frameworks of perturbation theory on the reflection coefficient powers. At firs approximation, formulas of temperature stationary distribution are obtainded with asymptotic accuracy in the limit of large value of the material absorption coefficient. 2007 Article Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient / A.V. Kolisnikov // Functional Materials. — 2007. — Т. 14, № 2. — С. 164-170. — Бібліогр.: 2 назв. — англ. 1027-5495 http://dspace.nbuv.gov.ua/handle/123456789/136483 en Functional Materials НТК «Інститут монокристалів» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The stationary problem of the heat radiative conductance is solved at the so-called grey approximation in semitransparent media. Using the geometric optics approximation, the case of small coeficient 0 of the ray reflection from the sample boundary is investigated. The problem is solved in frameworks of perturbation theory on the reflection coefficient powers. At firs approximation, formulas of temperature stationary distribution are obtainded with asymptotic accuracy in the limit of large value of the material absorption coefficient. |
format |
Article |
author |
Kolisnikov, A.V. |
spellingShingle |
Kolisnikov, A.V. Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient Functional Materials |
author_facet |
Kolisnikov, A.V. |
author_sort |
Kolisnikov, A.V. |
title |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
title_short |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
title_full |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
title_fullStr |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
title_full_unstemmed |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
title_sort |
problem of the heat radiative conductance in semitransparent media. the approximation of small reflection coefficient |
publisher |
НТК «Інститут монокристалів» НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/136483 |
citation_txt |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient / A.V. Kolisnikov // Functional Materials. — 2007. — Т. 14, № 2. — С. 164-170. — Бібліогр.: 2 назв. — англ. |
series |
Functional Materials |
work_keys_str_mv |
AT kolisnikovav problemoftheheatradiativeconductanceinsemitransparentmediatheapproximationofsmallreflectioncoefficient |
first_indexed |
2023-10-18T21:13:16Z |
last_indexed |
2023-10-18T21:13:16Z |
_version_ |
1796152237881294848 |