Некоторые задачи управления неоднородными процессами рождения и гибели
Для неоднородных марковских процессов рождения и гибели в случае постоянного отношения c интенсивностей гибели и рождения решены три задачи управления выбором параметра c . Для задачи минимизации вероятности выхода процесса при t → ∞ из полосы при помощи метода золотого сечения найдены точки минимум...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2016
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/140247 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Некоторые задачи управления неоднородными процессами рождения и гибели / Н.В. Андреев, В.М. Статкевич // Системні дослідження та інформаційні технології. — 2016. — № 3. — С. 101-117. — Бібліогр.: 17 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-140247 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1402472018-06-27T03:03:13Z Некоторые задачи управления неоднородными процессами рождения и гибели Андреев, Н.В. Статкевич, В.М. Математичні методи, моделі, проблеми і технології дослідження складних систем Для неоднородных марковских процессов рождения и гибели в случае постоянного отношения c интенсивностей гибели и рождения решены три задачи управления выбором параметра c . Для задачи минимизации вероятности выхода процесса при t → ∞ из полосы при помощи метода золотого сечения найдены точки минимума в случае их наличия, зависящие от конкретных значений порога и интегральной интенсивности рождения. Для задачи управления выбором параметра c с учётом стабилизирующей функции найдено точку минимума и доказано условие её существования; рассмотрены важные частные случаи. К этой задаче примыкает задача идентификации параметров для стабилизирующей функции экспоненциального роста. Для задачи минимизации математического ожидания момента вырождения при малой вероятности превышения порога найдены условия сходимости математического ожидания, упрощены условия вероятности превышения порога, а сама задача решена в случае постоянной интенсивности рождения. Для неоднорідних марковських процесів народження та загибелі у випадку постійного відношення c інтенсивностей загибелі та народження розв’язано три задачі керування вибором параметра c . Для задачі мінімізації ймовірності виходу процесу при t → ∞ зі смуги за допомогою методу золотого перерізу знайдено точки мінімуму у випадку їх наявності, які залежать від конкретних значень порога та інтегральної інтенсивності народження. Для задачі керування вибором параметра c з урахуванням стабілізуючої функції знайдено точку мінімуму та доведено умову її існування; розглянуто важливі окремі випадки. Разом з цією задачею природно розглянуто задачу ідентифікації параметрів для стабілізуючої функції експоненційного зростання. Для задачі мінімізації математичного сподівання моменту виродження за малої ймовірності перевищення порога знайдено умови збіжності математичного сподівання, спрощено умови ймовірності перевищення порога, а сама задача розв’язана у випадку постійної інтенсивності народження. We consider non-homogeneous Markov birth-death processes in a case of the constant ratio c of death and birth intensities. We solve three control problems by choosing the parameter c for such processes. We solve the problem of minimizing the probability of moving out of range as t → ∞ . We use the golden section search to find the existing minima, which depend on a threshold value and an integral birth intensity value. We solve the control problem by choosing the parameter c using the stabilization function. The existence of a minimum is proved and the minimum is found; also, important selected cases are considered. The parameter identification problem for an exponential stabilization function is also solved. We solve the problem of minimizing the mean of an extinction time with a small probability of exceeding the threshold. The convergence conditions for the mean are found, the conditions of the threshold exceeding probability are simplified, the problem is solved under an assumption of a constant birth intensity. 2016 Article Некоторые задачи управления неоднородными процессами рождения и гибели / Н.В. Андреев, В.М. Статкевич // Системні дослідження та інформаційні технології. — 2016. — № 3. — С. 101-117. — Бібліогр.: 17 назв. — рос. 1681–6048 DOI: 10.20535/SRIT.2308-8893.2016.3.09 http://dspace.nbuv.gov.ua/handle/123456789/140247 519.218.23+517.977.5 ru Системні дослідження та інформаційні технології Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Математичні методи, моделі, проблеми і технології дослідження складних систем Математичні методи, моделі, проблеми і технології дослідження складних систем |
spellingShingle |
Математичні методи, моделі, проблеми і технології дослідження складних систем Математичні методи, моделі, проблеми і технології дослідження складних систем Андреев, Н.В. Статкевич, В.М. Некоторые задачи управления неоднородными процессами рождения и гибели Системні дослідження та інформаційні технології |
description |
Для неоднородных марковских процессов рождения и гибели в случае постоянного отношения c интенсивностей гибели и рождения решены три задачи управления выбором параметра c . Для задачи минимизации вероятности выхода процесса при t → ∞ из полосы при помощи метода золотого сечения найдены точки минимума в случае их наличия, зависящие от конкретных значений порога и интегральной интенсивности рождения. Для задачи управления выбором параметра c с учётом стабилизирующей функции найдено точку минимума и доказано условие её существования; рассмотрены важные частные случаи. К этой задаче примыкает задача идентификации параметров для стабилизирующей функции экспоненциального роста. Для задачи минимизации математического ожидания момента вырождения при малой вероятности превышения порога найдены условия сходимости математического ожидания, упрощены условия вероятности превышения порога, а сама задача решена в случае постоянной интенсивности рождения. |
format |
Article |
author |
Андреев, Н.В. Статкевич, В.М. |
author_facet |
Андреев, Н.В. Статкевич, В.М. |
author_sort |
Андреев, Н.В. |
title |
Некоторые задачи управления неоднородными процессами рождения и гибели |
title_short |
Некоторые задачи управления неоднородными процессами рождения и гибели |
title_full |
Некоторые задачи управления неоднородными процессами рождения и гибели |
title_fullStr |
Некоторые задачи управления неоднородными процессами рождения и гибели |
title_full_unstemmed |
Некоторые задачи управления неоднородными процессами рождения и гибели |
title_sort |
некоторые задачи управления неоднородными процессами рождения и гибели |
publisher |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
publishDate |
2016 |
topic_facet |
Математичні методи, моделі, проблеми і технології дослідження складних систем |
url |
http://dspace.nbuv.gov.ua/handle/123456789/140247 |
citation_txt |
Некоторые задачи управления неоднородными процессами рождения и гибели / Н.В. Андреев, В.М. Статкевич // Системні дослідження та інформаційні технології. — 2016. — № 3. — С. 101-117. — Бібліогр.: 17 назв. — рос. |
series |
Системні дослідження та інформаційні технології |
work_keys_str_mv |
AT andreevnv nekotoryezadačiupravleniâneodnorodnymiprocessamiroždeniâigibeli AT statkevičvm nekotoryezadačiupravleniâneodnorodnymiprocessamiroždeniâigibeli |
first_indexed |
2023-10-18T21:22:17Z |
last_indexed |
2023-10-18T21:22:17Z |
_version_ |
1796152634345783296 |