Time Frequency Method of Solving One Boundary Value Problem for a Hyperbolic System and Its Application to the Oil Extraction

We consider the boundary value problem, where the motion of the object is described by the two-dimensional linear system of partial differential equations of hyperbolic type where a discontinuity is at a point within the interval that defines the phase coordinate x. Using the method of series and La...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Aliev, F.A., Aliev, N.A., Guliev, A.P.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140549
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Time Frequency Method of Solving One Boundary Value Problem for a Hyperbolic System and Its Application to the Oil Extraction / F.A. Aliev, N.A. Aliev, A.P. Guliev // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 2. — С. 101-112. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider the boundary value problem, where the motion of the object is described by the two-dimensional linear system of partial differential equations of hyperbolic type where a discontinuity is at a point within the interval that defines the phase coordinate x. Using the method of series and Laplace transformation in time t (time-frequency method), an analytical solution is found for the determination of debit Q(2l, t) and pressure P(2l, t), which can be effective in the calculation of the coefficient of hydraulic resistance in the lift at oil extraction by gas lift method where l is the well depth. For the case where the boundary functions are of exponential form, the formulas for P(2l, t) and Q(2l, t) depending only on t are obtained. It is shown that at constant boundary functions, these formulas allow us to determine the coefficient of hydraulic resistance in the lift of gas lift wells, which determines the change in the dynamics of pollution.