Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers

The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these fu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Serbenyuk, S.O.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140565
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-140565
record_format dspace
spelling irk-123456789-1405652018-07-11T01:23:20Z Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers Serbenyuk, S.O. The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated. 2017 Article Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.01.057 Mathematics Subject Classification 2000: 39B72, 26A27, 26A30, 11B34, 11K55 http://dspace.nbuv.gov.ua/handle/123456789/140565 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated.
format Article
author Serbenyuk, S.O.
spellingShingle Serbenyuk, S.O.
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
Журнал математической физики, анализа, геометрии
author_facet Serbenyuk, S.O.
author_sort Serbenyuk, S.O.
title Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_short Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_full Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_fullStr Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_full_unstemmed Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_sort continuous functions with complicated local structure defined in terms of alternating cantor series representation of numbers
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/140565
citation_txt Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT serbenyukso continuousfunctionswithcomplicatedlocalstructuredefinedintermsofalternatingcantorseriesrepresentationofnumbers
first_indexed 2023-10-18T21:22:56Z
last_indexed 2023-10-18T21:22:56Z
_version_ 1796152663005462528