Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these fu...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/140565 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-140565 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1405652018-07-11T01:23:20Z Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers Serbenyuk, S.O. The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated. 2017 Article Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.01.057 Mathematics Subject Classification 2000: 39B72, 26A27, 26A30, 11B34, 11K55 http://dspace.nbuv.gov.ua/handle/123456789/140565 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated. |
format |
Article |
author |
Serbenyuk, S.O. |
spellingShingle |
Serbenyuk, S.O. Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers Журнал математической физики, анализа, геометрии |
author_facet |
Serbenyuk, S.O. |
author_sort |
Serbenyuk, S.O. |
title |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
title_short |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
title_full |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
title_fullStr |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
title_full_unstemmed |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
title_sort |
continuous functions with complicated local structure defined in terms of alternating cantor series representation of numbers |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/140565 |
citation_txt |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT serbenyukso continuousfunctionswithcomplicatedlocalstructuredefinedintermsofalternatingcantorseriesrepresentationofnumbers |
first_indexed |
2023-10-18T21:22:56Z |
last_indexed |
2023-10-18T21:22:56Z |
_version_ |
1796152663005462528 |