Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these fu...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | Serbenyuk, S.O. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/140565 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
за авторством: S. O. Serbenyuk
Опубліковано: (2017) -
Certain Functions Dened in Terms of Cantor Series
за авторством: S. Serbenyuk
Опубліковано: (2020) -
Non-Differentiable Functions Defined in Terms of Classical Representations of Real Numbers
за авторством: Serbenyuk, S.O.
Опубліковано: (2018) -
Non-Dierentiable Functions Dened in Terms of Classical Representations of Real Numbers
за авторством: S. O. Serbenyuk
Опубліковано: (2018) -
Normal properties of numbers in the terms of their representation by the Perron series
за авторством: M. Moroz
Опубліковано: (2023)