2025-02-24T22:46:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-140566%22&qt=morelikethis&rows=5
2025-02-24T22:46:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-140566%22&qt=morelikethis&rows=5
2025-02-24T22:46:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-24T22:46:59-05:00 DEBUG: Deserialized SOLR response
Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
We consider the n² × n² real symmetric and hermitian matrices Mₙ, which are equal to the sum mn of tensor products of the vectors Xμ = B(Yμ ⊗ Yμ), μ = 1, . . . ,mn, where Yμ are i.i.d. random vectors from Rⁿ(Cⁿ) with zero mean and unit variance of components, and B is an n² × n² positive definite no...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/140566 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the n² × n² real symmetric and hermitian matrices Mₙ, which are equal to the sum mn of tensor products of the vectors Xμ = B(Yμ ⊗ Yμ), μ = 1, . . . ,mn, where Yμ are i.i.d. random vectors from Rⁿ(Cⁿ) with zero mean and unit variance of components, and B is an n² × n² positive definite non-random matrix. We prove that if mₙ / n² → c ∊ [0,+∞) and the Normalized Counting Measure of eigenvalues of BJB, where J is defined below in (2.6), converges weakly, then the Normalized Counting Measure of eigenvalues of Mn converges weakly in probability to a non-random limit, and its Stieltjes transform can be found from a certain functional equation. |
---|