2025-02-24T18:38:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-140566%22&qt=morelikethis&rows=5
2025-02-24T18:38:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-140566%22&qt=morelikethis&rows=5
2025-02-24T18:38:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-24T18:38:49-05:00 DEBUG: Deserialized SOLR response

Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples

We consider the n² × n² real symmetric and hermitian matrices Mₙ, which are equal to the sum mn of tensor products of the vectors Xμ = B(Yμ ⊗ Yμ), μ = 1, . . . ,mn, where Yμ are i.i.d. random vectors from Rⁿ(Cⁿ) with zero mean and unit variance of components, and B is an n² × n² positive definite no...

Full description

Saved in:
Bibliographic Details
Main Author: Tieplova, D.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/140566
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-140566
record_format dspace
spelling irk-123456789-1405662018-07-11T01:23:21Z Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples Tieplova, D. We consider the n² × n² real symmetric and hermitian matrices Mₙ, which are equal to the sum mn of tensor products of the vectors Xμ = B(Yμ ⊗ Yμ), μ = 1, . . . ,mn, where Yμ are i.i.d. random vectors from Rⁿ(Cⁿ) with zero mean and unit variance of components, and B is an n² × n² positive definite non-random matrix. We prove that if mₙ / n² → c ∊ [0,+∞) and the Normalized Counting Measure of eigenvalues of BJB, where J is defined below in (2.6), converges weakly, then the Normalized Counting Measure of eigenvalues of Mn converges weakly in probability to a non-random limit, and its Stieltjes transform can be found from a certain functional equation. 2017 Article Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples / D. Tieplova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 82-98. — Бібліогр.: 11 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.01.082 Mathematics Subject Classification 2000: 15B52 http://dspace.nbuv.gov.ua/handle/123456789/140566 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the n² × n² real symmetric and hermitian matrices Mₙ, which are equal to the sum mn of tensor products of the vectors Xμ = B(Yμ ⊗ Yμ), μ = 1, . . . ,mn, where Yμ are i.i.d. random vectors from Rⁿ(Cⁿ) with zero mean and unit variance of components, and B is an n² × n² positive definite non-random matrix. We prove that if mₙ / n² → c ∊ [0,+∞) and the Normalized Counting Measure of eigenvalues of BJB, where J is defined below in (2.6), converges weakly, then the Normalized Counting Measure of eigenvalues of Mn converges weakly in probability to a non-random limit, and its Stieltjes transform can be found from a certain functional equation.
format Article
author Tieplova, D.
spellingShingle Tieplova, D.
Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
Журнал математической физики, анализа, геометрии
author_facet Tieplova, D.
author_sort Tieplova, D.
title Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
title_short Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
title_full Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
title_fullStr Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
title_full_unstemmed Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
title_sort distribution of eigenvalues of sample covariance matrices with tensor product samples
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/140566
citation_txt Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples / D. Tieplova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 82-98. — Бібліогр.: 11 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT tieplovad distributionofeigenvaluesofsamplecovariancematriceswithtensorproductsamples
first_indexed 2023-10-18T21:22:56Z
last_indexed 2023-10-18T21:22:56Z
_version_ 1796152663111368704