Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asy...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/140569 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-140569 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1405692018-07-11T01:23:26Z Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift Goncharenko, M. Khilkova, L. We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process. 2017 Article Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.02.154 Mathematics Subject Classification 2000: 35Q74 http://dspace.nbuv.gov.ua/handle/123456789/140569 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process. |
format |
Article |
author |
Goncharenko, M. Khilkova, L. |
spellingShingle |
Goncharenko, M. Khilkova, L. Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift Журнал математической физики, анализа, геометрии |
author_facet |
Goncharenko, M. Khilkova, L. |
author_sort |
Goncharenko, M. |
title |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
title_short |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
title_full |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
title_fullStr |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
title_full_unstemmed |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
title_sort |
homogenized model of non-stationary diffusion in porous media with the drift |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/140569 |
citation_txt |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT goncharenkom homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift AT khilkoval homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift |
first_indexed |
2023-10-18T21:22:56Z |
last_indexed |
2023-10-18T21:22:56Z |
_version_ |
1796152663429087232 |