Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift

We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asy...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Goncharenko, M., Khilkova, L.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140569
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-140569
record_format dspace
spelling irk-123456789-1405692018-07-11T01:23:26Z Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift Goncharenko, M. Khilkova, L. We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process. 2017 Article Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.02.154 Mathematics Subject Classification 2000: 35Q74 http://dspace.nbuv.gov.ua/handle/123456789/140569 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process.
format Article
author Goncharenko, M.
Khilkova, L.
spellingShingle Goncharenko, M.
Khilkova, L.
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
Журнал математической физики, анализа, геометрии
author_facet Goncharenko, M.
Khilkova, L.
author_sort Goncharenko, M.
title Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_short Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_full Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_fullStr Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_full_unstemmed Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_sort homogenized model of non-stationary diffusion in porous media with the drift
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/140569
citation_txt Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT goncharenkom homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift
AT khilkoval homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift
first_indexed 2023-10-18T21:22:56Z
last_indexed 2023-10-18T21:22:56Z
_version_ 1796152663429087232