Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain

We consider a boundary-value problem for the Poisson equation in a strongly perforated domain Ωε = Ω\Fε ⊂ Rⁿ (n ≥ 2) with non-linear Robin's condition on the boundary of the perforating set Fε. The domain Ωε depends on the small parameter ε > 0 such that the set Fε becomes more and more loos...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Khruslov, E.Ya., Khilkova, L.O., Goncharenko, M.V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140576
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain / E.Ya. Khruslov, L.O. Khilkova, M.V. Goncharenko // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 3. — С. 283-313. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-140576
record_format dspace
spelling irk-123456789-1405762018-07-11T01:23:36Z Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain Khruslov, E.Ya. Khilkova, L.O. Goncharenko, M.V. We consider a boundary-value problem for the Poisson equation in a strongly perforated domain Ωε = Ω\Fε ⊂ Rⁿ (n ≥ 2) with non-linear Robin's condition on the boundary of the perforating set Fε. The domain Ωε depends on the small parameter ε > 0 such that the set Fε becomes more and more loosened and distributes more densely in the domain Ω as ε→0. We study the asymptotic behavior of the solution uε(x) of the problem as ε→0. A homogenized equation for the main term u(x) of the asymptotics of uε(x) is constructed and the integral conditions for the convergence of uε(x) to u(x) are formulated. 2017 Article Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain / E.Ya. Khruslov, L.O. Khilkova, M.V. Goncharenko // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 3. — С. 283-313. — Бібліогр.: 17 назв. — англ. 1812-9471 Mathematics Subject Classification 2000: 35Q70 http://dspace.nbuv.gov.ua/handle/123456789/140576 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider a boundary-value problem for the Poisson equation in a strongly perforated domain Ωε = Ω\Fε ⊂ Rⁿ (n ≥ 2) with non-linear Robin's condition on the boundary of the perforating set Fε. The domain Ωε depends on the small parameter ε > 0 such that the set Fε becomes more and more loosened and distributes more densely in the domain Ω as ε→0. We study the asymptotic behavior of the solution uε(x) of the problem as ε→0. A homogenized equation for the main term u(x) of the asymptotics of uε(x) is constructed and the integral conditions for the convergence of uε(x) to u(x) are formulated.
format Article
author Khruslov, E.Ya.
Khilkova, L.O.
Goncharenko, M.V.
spellingShingle Khruslov, E.Ya.
Khilkova, L.O.
Goncharenko, M.V.
Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain
Журнал математической физики, анализа, геометрии
author_facet Khruslov, E.Ya.
Khilkova, L.O.
Goncharenko, M.V.
author_sort Khruslov, E.Ya.
title Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain
title_short Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain
title_full Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain
title_fullStr Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain
title_full_unstemmed Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain
title_sort integral conditions for convergence of solutions of non-linear robin's problem in strongly perforated domain
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/140576
citation_txt Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain / E.Ya. Khruslov, L.O. Khilkova, M.V. Goncharenko // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 3. — С. 283-313. — Бібліогр.: 17 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT khrusloveya integralconditionsforconvergenceofsolutionsofnonlinearrobinsprobleminstronglyperforateddomain
AT khilkovalo integralconditionsforconvergenceofsolutionsofnonlinearrobinsprobleminstronglyperforateddomain
AT goncharenkomv integralconditionsforconvergenceofsolutionsofnonlinearrobinsprobleminstronglyperforateddomain
first_indexed 2023-10-18T21:22:58Z
last_indexed 2023-10-18T21:22:58Z
_version_ 1796152664166236160