On the Long-Time Asymptotics for the Korteweg-de Vries Equation with Steplike Initial Data Associated with Rarefaction Waves

We discuss an asymptotical behavior of the rarefaction wave for the KdV equation in the region behind the wave front. The first and the second terms of the asymptotical expansion for such a solution with respect to large time were derived without detailed analysis in [1]. In the present work, we cor...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Andreiev, K., Egorova, I.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140579
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Long-Time Asymptotics for the Korteweg-de Vries Equation with Steplike Initial Data Associated with Rarefaction Waves / K. Andreiev, I. Egorova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 325-343. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We discuss an asymptotical behavior of the rarefaction wave for the KdV equation in the region behind the wave front. The first and the second terms of the asymptotical expansion for such a solution with respect to large time were derived without detailed analysis in [1]. In the present work, we correct the formula for the second term by investigating the corresponding parametrix problem. We also study an in uence of the resonance on the asymptotical behavior of the solution.