Fluctuations of Interlacing Sequences

In a series of works published in the 1990s, Kerov put forth various applications of the circle of ideas centered at the Markov moment problem to the limiting shape of random continual diagrams arising in representation theory and spectral theory. We demonstrate on several examples that his approach...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Sodin, S.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140582
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fluctuations of Interlacing Sequences / S. Sodin // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 63. — Бібліогр.: 63 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-140582
record_format dspace
spelling irk-123456789-1405822018-07-11T01:23:40Z Fluctuations of Interlacing Sequences Sodin, S. In a series of works published in the 1990s, Kerov put forth various applications of the circle of ideas centered at the Markov moment problem to the limiting shape of random continual diagrams arising in representation theory and spectral theory. We demonstrate on several examples that his approach is also adequate to study the fluctuations about the limiting shape. In the random matrix setting, we compare two continual diagrams: one is constructed from the eigenvalues of the matrix and the critical points of its characteristic polynomial, whereas the second one is constructed from the eigenvalues of the matrix and those of its principal submatrix. The fluctuations of the latter diagram were recently studied by Erd}os and Schröder; we discuss the uctuations of the former, and compare the two limiting processes. For Plancherel random partitions, the Markov correspondence establishes the equivalence between Kerov's central limit theorem for the Young diagram and the Ivanov-Olshanski central limit theorem for the transition measure. We outline a combinatorial proof of the latter, and compare the limiting process with the ones of random matrices. 2017 Article Fluctuations of Interlacing Sequences / S. Sodin // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 63. — Бібліогр.: 63 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.04.364 Mathematics Subject Classification 2000: 60B20, 34L20, 05E10, 60F05, 44A60 http://dspace.nbuv.gov.ua/handle/123456789/140582 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In a series of works published in the 1990s, Kerov put forth various applications of the circle of ideas centered at the Markov moment problem to the limiting shape of random continual diagrams arising in representation theory and spectral theory. We demonstrate on several examples that his approach is also adequate to study the fluctuations about the limiting shape. In the random matrix setting, we compare two continual diagrams: one is constructed from the eigenvalues of the matrix and the critical points of its characteristic polynomial, whereas the second one is constructed from the eigenvalues of the matrix and those of its principal submatrix. The fluctuations of the latter diagram were recently studied by Erd}os and Schröder; we discuss the uctuations of the former, and compare the two limiting processes. For Plancherel random partitions, the Markov correspondence establishes the equivalence between Kerov's central limit theorem for the Young diagram and the Ivanov-Olshanski central limit theorem for the transition measure. We outline a combinatorial proof of the latter, and compare the limiting process with the ones of random matrices.
format Article
author Sodin, S.
spellingShingle Sodin, S.
Fluctuations of Interlacing Sequences
Журнал математической физики, анализа, геометрии
author_facet Sodin, S.
author_sort Sodin, S.
title Fluctuations of Interlacing Sequences
title_short Fluctuations of Interlacing Sequences
title_full Fluctuations of Interlacing Sequences
title_fullStr Fluctuations of Interlacing Sequences
title_full_unstemmed Fluctuations of Interlacing Sequences
title_sort fluctuations of interlacing sequences
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/140582
citation_txt Fluctuations of Interlacing Sequences / S. Sodin // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 63. — Бібліогр.: 63 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT sodins fluctuationsofinterlacingsequences
first_indexed 2023-10-18T21:22:59Z
last_indexed 2023-10-18T21:22:59Z
_version_ 1796152664797478912