Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой

Проведён сравнительный анализ температурных зависимостей предела текучести поликомпонентных и бинарных твёрдых растворов с ОЦК-ре-шёткой (AlCrFeCoNi, AlTiVCrNbMo, Ti₂₅Zr₂₅Hf₂₅Nb₁₂,₅Ta₁₂,₅, VNbMoTaW, Fe–Cr, Fe–Mo, Fe–W, Cr–Fe), а также некоторых чистых ОЦК-металлов. Методом термоактивационного анализ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Фирстов, С.А., Рогуль, Т.Г., Крапивка, Н.А., Чугунова, С.И.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2018
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140802
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой / С.А. Фирстов, Т.Г. Рогуль, Н.А. Крапивка, С.И. Чугунова // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 2. — С. 219-234. — Бібліогр.: 21 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-140802
record_format dspace
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Физика прочности и пластичности
Физика прочности и пластичности
spellingShingle Физика прочности и пластичности
Физика прочности и пластичности
Фирстов, С.А.
Рогуль, Т.Г.
Крапивка, Н.А.
Чугунова, С.И.
Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой
Металлофизика и новейшие технологии
description Проведён сравнительный анализ температурных зависимостей предела текучести поликомпонентных и бинарных твёрдых растворов с ОЦК-ре-шёткой (AlCrFeCoNi, AlTiVCrNbMo, Ti₂₅Zr₂₅Hf₂₅Nb₁₂,₅Ta₁₂,₅, VNbMoTaW, Fe–Cr, Fe–Mo, Fe–W, Cr–Fe), а также некоторых чистых ОЦК-металлов. Методом термоактивационного анализа вычислены значения энергии активации движения дислокаций и активационного объёма. Показано, что, как для бинарных, так и для поликомпонентных твёрдых растворов, характерно увеличение атермической компоненты напряжения течения в сравнении с чистыми ОЦК-металлами. При этом, в сравнении с чистыми металлами, поликомпонентные твёрдые растворы демонстрируют усиление термической составляющей, в то время как для бинарных ОЦК-спла¬вов имеет место ослабление температурной зависимости напряжения течения. Обсуждается природа этого эффекта. Показано, что высокое атермическое твёрдорастворное упрочнение поликомпонентных твёрдых растворов может быть связано с изменением вектора Бюргерса вдоль дислокационной линии (как по длине, так и по направлению) и появлением составляющей, перпендикулярной плоскости скольжения. Наблюдаемое усиление термической составляющей напряжения течения в поликомпонентных ОЦК-твёрдых растворах предположительно обусловлено наличием высокой концентрации точек закрепления термически активируемого дислокационного отрезка атомами элементов, которые имеют высокий уровень размерно-упругого несоответствия по сравнению со средним значением для сплава.
format Article
author Фирстов, С.А.
Рогуль, Т.Г.
Крапивка, Н.А.
Чугунова, С.И.
author_facet Фирстов, С.А.
Рогуль, Т.Г.
Крапивка, Н.А.
Чугунова, С.И.
author_sort Фирстов, С.А.
title Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой
title_short Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой
title_full Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой
title_fullStr Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой
title_full_unstemmed Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой
title_sort термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с оцк-решёткой
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2018
topic_facet Физика прочности и пластичности
url http://dspace.nbuv.gov.ua/handle/123456789/140802
citation_txt Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой / С.А. Фирстов, Т.Г. Рогуль, Н.А. Крапивка, С.И. Чугунова // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 2. — С. 219-234. — Бібліогр.: 21 назв. — рос.
series Металлофизика и новейшие технологии
work_keys_str_mv AT firstovsa termoaktivacionnyjanaliztemperaturnojzavisimostinaprâženiâtečeniâvtvërdyhrastvorahsockrešëtkoj
AT rogulʹtg termoaktivacionnyjanaliztemperaturnojzavisimostinaprâženiâtečeniâvtvërdyhrastvorahsockrešëtkoj
AT krapivkana termoaktivacionnyjanaliztemperaturnojzavisimostinaprâženiâtečeniâvtvërdyhrastvorahsockrešëtkoj
AT čugunovasi termoaktivacionnyjanaliztemperaturnojzavisimostinaprâženiâtečeniâvtvërdyhrastvorahsockrešëtkoj
first_indexed 2023-10-18T21:23:28Z
last_indexed 2023-10-18T21:23:28Z
_version_ 1796152686375075840
spelling irk-123456789-1408022018-07-16T01:23:47Z Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой Фирстов, С.А. Рогуль, Т.Г. Крапивка, Н.А. Чугунова, С.И. Физика прочности и пластичности Проведён сравнительный анализ температурных зависимостей предела текучести поликомпонентных и бинарных твёрдых растворов с ОЦК-ре-шёткой (AlCrFeCoNi, AlTiVCrNbMo, Ti₂₅Zr₂₅Hf₂₅Nb₁₂,₅Ta₁₂,₅, VNbMoTaW, Fe–Cr, Fe–Mo, Fe–W, Cr–Fe), а также некоторых чистых ОЦК-металлов. Методом термоактивационного анализа вычислены значения энергии активации движения дислокаций и активационного объёма. Показано, что, как для бинарных, так и для поликомпонентных твёрдых растворов, характерно увеличение атермической компоненты напряжения течения в сравнении с чистыми ОЦК-металлами. При этом, в сравнении с чистыми металлами, поликомпонентные твёрдые растворы демонстрируют усиление термической составляющей, в то время как для бинарных ОЦК-спла¬вов имеет место ослабление температурной зависимости напряжения течения. Обсуждается природа этого эффекта. Показано, что высокое атермическое твёрдорастворное упрочнение поликомпонентных твёрдых растворов может быть связано с изменением вектора Бюргерса вдоль дислокационной линии (как по длине, так и по направлению) и появлением составляющей, перпендикулярной плоскости скольжения. Наблюдаемое усиление термической составляющей напряжения течения в поликомпонентных ОЦК-твёрдых растворах предположительно обусловлено наличием высокой концентрации точек закрепления термически активируемого дислокационного отрезка атомами элементов, которые имеют высокий уровень размерно-упругого несоответствия по сравнению со средним значением для сплава. Проведено порівняльну аналізу температурних залежностей межі плинности полікомпонентних і бінарних твердих розчинів з ОЦК-ґратницею (AlCrFeCoNi, AlTiVCrNbMo, Ti₂₅Zr₂₅Hf₂₅Nb₁₂,₅Ta₁₂,₅, VNbMoTaW, Fe–Cr, Fe–Mo, Fe–W, Cr–Fe), а також деяких чистих ОЦК-металів. Методою термоактиваційної аналізи розраховано значення енергії активації руху дислокацій та активаційного об’єму. Показано, що, як для бінарних, так і для полікомпонентних твердих розчинів, характерним є збільшення атермічної компоненти напруження плинности в порівнянні з чистими ОЦК-металами. При цьому, у порівнянні з чистими металами, полікомпонентні тверді розчини демонструють посилення термічної складової напруження плинности, в той час як для бінарних ОЦК-стопів відбувається її послаблення. Обговорюється природа цього ефекту. Показано, що високе атермічне твердорозчинне зміцнення полікомпонентних твердих розчинів може бути пов’язане зі зміною Бюрґерсового вектора уздовж дислокаційної лінії (як за довжиною, так і за напрямком) і появою компоненти, перпендикулярної до площини ковзання. Припускається, що посилення термічної складової температурної залежности межі плинности полікомпонентних ОЦК-твердих розчинів зумовлене наявністю високої концентрації точок закріплення термічно активованого дислокаційного відрізку атомами елементів, які мають високий рівень розмірно-пружньої невідповідности в порівнянні з середнім значенням для стопу. Comparative analysis of the yield-stress temperature dependences for polycomponent and binary solid solutions with a b.c.c. lattice (AlCrFeCoNi, AlTiVCrNbMo, Ti₂₅Zr₂₅Hf₂₅Nb₁₂,₅Ta₁₂,₅, VNbMoTaW, Fe–Cr, Fe–Mo, Fe–W, Cr–Fe), and some pure b.c.c. metals is carried out. Using the thermoactivation analysis, the values of the activation energy of dislocation movement and the activation volume are calculated. As shown, for the binary and polycomponent solid solutions, an increase in athermal component of a flow stress is characteristic in comparison with pure b.c.c. metals. In this case, in comparison with pure metals, multicomponent solid solutions demonstrate an increasing of the thermal component, while for binary b.c.c. alloys, there is a weakening of the temperature dependence of a flow stress. The nature of this effect is discussed. As shown, high athermal solid-solution hardening of polycomponent solid solutions can be associated with a change of the Burgers vector (by both the length and the direction) along the dislocation line and an appearance of a component perpendicular to the glide plane. The observed increase of the flow-stress thermal component in polycomponent b.c.c. solid solutions is presumably due to the presence of a high concentration of points of fixation of the thermally activated dislocation segment by atoms of elements, which have a high level of size-elastic discrepancy in comparison with an average value for the alloy. 2018 Article Термоактивационный анализ температурной зависимости напряжения течения в твёрдых растворах с ОЦК-решёткой / С.А. Фирстов, Т.Г. Рогуль, Н.А. Крапивка, С.И. Чугунова // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 2. — С. 219-234. — Бібліогр.: 21 назв. — рос. 1024-1809 PACS: 61.72.Hh, 62.20.F-, 62.40.+i, 65.40.De, 81.40.Cd, 81.40.Lm, 83.60.La DOI: https://doi.org/10.15407/mfint.40.02.0219 http://dspace.nbuv.gov.ua/handle/123456789/140802 ru Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України