Устойчивость, неравномерная по запаздыванию, одной слаболинейной системы с последствием
Рассматривается система дифференциальных уравнений с асимптотически устойчивой диагональной частью и нелинейностью, представляющей сумму нелинейных функций одного аргумента, удовлетворяющих условиям Липшица. Система имеет положение равновесия в первом квадранте. Исследование устойчивости положения р...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Труды Института прикладной математики и механики |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/140845 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Устойчивость, неравномерная по запаздыванию, одной слаболинейной системы с последствием / Д.Я. Хусаинов, Й. Диблик, Я. Баштинец, А.С. Сиренко // Труды Института прикладной математики и механики НАН Украины. — Слов’янськ: ІПММ НАН України, 2015. — Т. 29. — С. 129-146. — Бібліогр.: 5 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассматривается система дифференциальных уравнений с асимптотически устойчивой диагональной частью и нелинейностью, представляющей сумму нелинейных функций одного аргумента, удовлетворяющих условиям Липшица. Система имеет положение равновесия в первом квадранте. Исследование устойчивости положения равновесия проводится с использованием метода функций Ляпунова. Функция Ляпунова строится в виде суммы квадратов фазовых переменных. Получены конструктивные условия устойчивости. Рассматриваются системы с запаздыванием. Получены достаточные условия устойчивости, зависящие от величины запаздывания. |
---|