Buckling of elastic circular plates with an elastically restrained edges against rotation and internal elastic ring support

The buckling of elastic circular plates with an internal elastic ring support and elastically restrained edges against rotation and simply supported is concerned. The classical plate theory is used to derive the governing differential equation. This work presents the existence of buckling mode switc...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Bhaskara Rao, L., Kameswara Rao, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут механіки ім. С.П. Тимошенка НАН України 2015
Назва видання:Прикладная механика
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/141005
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Buckling of elastic circular plates with an elastically restrained edges against rotation and internal elastic ring support / L. Bhaskara Rao, C. Kameswara Rao // Прикладная механика. — 2015. — Т. 51, № 4. — С. 133-144. — Бібліогр.: 17 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The buckling of elastic circular plates with an internal elastic ring support and elastically restrained edges against rotation and simply supported is concerned. The classical plate theory is used to derive the governing differential equation. This work presents the existence of buckling mode switching with respect to the radius of internal elastic ring support. The plate may buckle in an axisymmetric mode in general, but when the radius of the ring support becomes small, the plate may buckle in an asymmetric mode. The cross-over ring support radius varies from 0.09891 to 0.1545 times the plate radius, depending on the rotational stiffness of the elastic restraint at the edges and elastic restraint of the ring. The optimum radius of the internal elastic ring support for maximum buckling load is also determined. Extensive data is tabulated so that pertinent conclusions can be arrived at on the influence of rotational restraint, translational restraint of internal elastic ring support, Poisson’s ratio, and other boundary conditions on the buckling of uniform isotropic circular plates. The numerical results obtained are in good agreement with the previously published data.