On blow-up solutions and dead zones in semilinear equations
We study semilinear elliptic equations of the form div(A(z)∇u) = f(u) in Ω⊂ C, where A(z) stands for a symmetric 2×2 matrix function with measurable entries, det A =1, and such that 1/ K |ξ|² ≤ 〈A(z)ξ,ξ〉 ≤ K |ξ|², ξ ∈ R², 1≤ K < ∞. Making use of our Factorization theorem, we give some explicit so...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2018
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/141139 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On blow-up solutions and dead zones in semilinear equations / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2018. — № 4. — С. 9-15. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We study semilinear elliptic equations of the form div(A(z)∇u) = f(u) in Ω⊂ C, where A(z) stands for a symmetric 2×2 matrix function with measurable entries, det A =1, and such that 1/ K |ξ|² ≤ 〈A(z)ξ,ξ〉 ≤ K |ξ|², ξ ∈ R², 1≤ K < ∞. Making use of our Factorization theorem, we give some explicit solutions for the above equation if f = e^u or f = e^q, when matrices A(z) are chosen in an appropriate form. |
---|