К решению нестационарных нелинейных граничных обратных задач теплопроводности
Для решения нелинейной граничной обратной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируется сплайнами Шёнберга. Применяется метод функций влиян...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
2017
|
Назва видання: | Проблемы машиностроения |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/141878 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | К решению нестационарных нелинейных граничных обратных задач теплопроводности / Ю.М. Мацевитый, А.О. Костиков, Н.А. Сафонов, В.В. Ганчин // Проблемы машиностроения. — 2017. — Т. 20, № 4. — С. 15-23. — Бібліогр.: 16 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Для решения нелинейной граничной обратной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируется сплайнами Шёнберга. Применяется метод функций влияния, для чего нелинейная задача сводится к последовательности линейных обратных задач. |
---|