К решению нестационарных нелинейных граничных обратных задач теплопроводности

Для решения нелинейной граничной обратной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируется сплайнами Шёнберга. Применяется метод функций влиян...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Мацевитый, Ю.М., Костиков, А.О., Сафонов, Н.А., Ганчин, В.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2017
Назва видання:Проблемы машиностроения
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/141878
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:К решению нестационарных нелинейных граничных обратных задач теплопроводности / Ю.М. Мацевитый, А.О. Костиков, Н.А. Сафонов, В.В. Ганчин // Проблемы машиностроения. — 2017. — Т. 20, № 4. — С. 15-23. — Бібліогр.: 16 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Для решения нелинейной граничной обратной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируется сплайнами Шёнберга. Применяется метод функций влияния, для чего нелинейная задача сводится к последовательности линейных обратных задач.