Перша основна задача теорії пружності у півпросторі з декількома паралельними круговими циліндричними порожнинами

Під час проектування різного роду конструкцій, прогнозування міцності гірських виробок в механіці гірських порід і геотехнічній механіці зустрічаються задачі, в яких необхідно знати напружено-деформований стан півпростору з циліндричними порожнинами та враховувати взаємний вплив порожнин та межі пів...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Мірошніков, В.Ю.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2018
Назва видання:Проблеми машинобудування
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/141902
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Перша основна задача теорії пружності у півпросторі з декількома паралельними круговими циліндричними порожнинами / В.Ю. Мірошніков // Проблеми машинобудування. — 2018. — Т. 21, № 2. — С. 12-18. — Бібліогр.: 16 назв. — укр., англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Під час проектування різного роду конструкцій, прогнозування міцності гірських виробок в механіці гірських порід і геотехнічній механіці зустрічаються задачі, в яких необхідно знати напружено-деформований стан півпростору з циліндричними порожнинами та враховувати взаємний вплив порожнин та межі півпростору. В статті наведено аналітико-чисельний розв’язок першої основної просторової задачі теорії пружності (на межах задані напруження) для однорідного півпростору з декількома паралельними між собою і межею півпростору кругових циліндричних порожнин. Задані напруження вважаються такими, що швидко спадають до нуля на межах порожнин по координатах z, на межі півпростору по координатах z та x на далеких відстанях від початку координат. Для розв’язання задачі використано узагальнений метод Фур’є стосовно системи рівнянь Ламе в циліндричних координатах, пов’язаних із циліндрами, та декартових координатах, пов’язаних з півпростором. Для переходу між базисними розв’язками рівняння Ламе були використані особливі формули переходу між локальними циліндричними системами координат та між декартовою і циліндричними системами координат. Нескінченні системи лінійних алгебраїчних рівнянь, до яких зведено проблему, розв’язано методом зрізання. В результаті було знайдено переміщення та напруження в пружному тілі. Як приклад наведено докладний числовий аналіз напружено-деформованого стану для двох паралельних циліндричних порожнин у півпросторі за різних значень геометричних параметрів задачі. Наведені графіки дають картину розподілу напружень в тілі у найбільш цікавих зонах, уявлення про взаємний вплив циліндричних порожнин та взаємний вплив межі півпростору і циліндричних порожнин в залежності від геометричних параметрів задачі.