(a, d)-дистанційна антимагічна розмітка окремих типів графів

Досліджено необхідні умови існування (a, d)-дистанційної антимагічної розмітки графа G = (V, E) порядку n. Одержано теореми, що розширюють сімейство не (a, d)-дистанційних антимагічних графів. Зокрема, доведено, що корона Pn ∘ P1 не допускає (a, 1) -дистанційної антимагічної розмітки для n ≥ 2, якщ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Семенюта, М.Ф.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2016
Назва видання:Кибернетика и системный анализ
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/142065
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:(a, d)-дистанційна антимагічна розмітка окремих типів графів / М.Ф. Семенюта // Кибернетика и системный анализ. — 2016. — Т. 52, № 6. — С. 135-142. — Бібліогр.: 11 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Досліджено необхідні умови існування (a, d)-дистанційної антимагічної розмітки графа G = (V, E) порядку n. Одержано теореми, що розширюють сімейство не (a, d)-дистанційних антимагічних графів. Зокрема, доведено, що корона Pn ∘ P1 не допускає (a, 1) -дистанційної антимагічної розмітки для n ≥ 2, якщо a ≤ 2. Встановлено значення a, при яких ланцюг Pn може бути (a, 1) -дистанційним антимагічним графом. Досліджено окремий випадок циркулянтного графа.