Резонансні рівняння і класичні ортогональні многочлени
З використанням загальної теореми В.Л. Макарова про зображення частинних розв'язків резонансних рівнянь у банахових просторах (1974) побудовано та обґрунтовано рекурентний алгоритм знаходження частинних розв'язків резонансних рівнянь першого та другого роду із загальним диференціальним опе...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2018
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/144546 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Резонансні рівняння і класичні ортогональні многочлени / І.П. Гаврилюк, В.Л. Макаров // Доповіді Національної академії наук України. — 2018. — № 11. — С. 3-10. — Бібліогр.: 8 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | З використанням загальної теореми В.Л. Макарова про зображення частинних розв'язків резонансних рівнянь у банахових просторах (1974) побудовано та обґрунтовано рекурентний алгоритм знаходження частинних розв'язків резонансних рівнянь першого та другого роду із загальним диференціальним оператором
для класичних ортогональних многочленів. Наведено приклад загального розв’язку резонансних рівнянь із диференціальним оператором для многочленів Лежандра. |
---|