Completion and extension of operators in Krein spaces
A generalization of the well-known results of M.G. Kreiın on the description of the self-adjoint contractive extension of a Hermitian contraction is obtained. This generalization concerns the situation where the self-adjoint operator A and extensions A belong to a Kreiın space or a Pontryagin space,...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/145084 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Completion and extension of operators in Krein spaces / D. Baidiuk // Український математичний вісник. — 2016. — Т. 13, № 4. — С. 452-472. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-145084 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1450842019-01-15T01:23:47Z Completion and extension of operators in Krein spaces Baidiuk, D. A generalization of the well-known results of M.G. Kreiın on the description of the self-adjoint contractive extension of a Hermitian contraction is obtained. This generalization concerns the situation where the self-adjoint operator A and extensions A belong to a Kreiın space or a Pontryagin space, and their defect operators are allowed to have a fixed number of negative eigenvalues. A result of Yu. L. Shmul’yan on completions of nonnegative block operators is generalized for block operators with a fixed number of negative eigenvalues in a Kreiın space. 2016 Article Completion and extension of operators in Krein spaces / D. Baidiuk // Український математичний вісник. — 2016. — Т. 13, № 4. — С. 452-472. — Бібліогр.: 27 назв. — англ. 1810-3200 http://dspace.nbuv.gov.ua/handle/123456789/145084 2010 MSC. 46C20, 47A20, 47A63 en Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A generalization of the well-known results of M.G. Kreiın on the description of the self-adjoint contractive extension of a Hermitian contraction is obtained. This generalization concerns the situation where the self-adjoint operator A and extensions A belong to a Kreiın space or a Pontryagin space, and their defect operators are allowed to have a fixed number of negative eigenvalues. A result of Yu. L. Shmul’yan on completions of nonnegative block operators is generalized for block operators with a fixed number of negative eigenvalues in a Kreiın space. |
format |
Article |
author |
Baidiuk, D. |
spellingShingle |
Baidiuk, D. Completion and extension of operators in Krein spaces Український математичний вісник |
author_facet |
Baidiuk, D. |
author_sort |
Baidiuk, D. |
title |
Completion and extension of operators in Krein spaces |
title_short |
Completion and extension of operators in Krein spaces |
title_full |
Completion and extension of operators in Krein spaces |
title_fullStr |
Completion and extension of operators in Krein spaces |
title_full_unstemmed |
Completion and extension of operators in Krein spaces |
title_sort |
completion and extension of operators in krein spaces |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/145084 |
citation_txt |
Completion and extension of operators in Krein spaces / D. Baidiuk // Український математичний вісник. — 2016. — Т. 13, № 4. — С. 452-472. — Бібліогр.: 27 назв. — англ. |
series |
Український математичний вісник |
work_keys_str_mv |
AT baidiukd completionandextensionofoperatorsinkreinspaces |
first_indexed |
2023-05-20T17:21:11Z |
last_indexed |
2023-05-20T17:21:11Z |
_version_ |
1796153103129509888 |