Задача о тени для областей в евклидовых пространствах

В работе исследуется задача о тени, обобщенная на области пространства Rⁿ, n ≤ 3. Под задачей о тени подразумевается нахождение минимального количества шаров, удовлетворяющих некоторым условиям, и таких, что каждая прямая, проходящая через заданную точку, пересечет хотя бы один шар из набора. Доказа...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Осипчук, Т.М., Ткачук, М.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145088
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Задача о тени для областей в евклидовых пространствах / Т.М. Осипчук, М.В. Ткачук // Український математичний вісник. — 2016. — Т. 13, № 4. — С. 532-542. — Бібліогр.: 9 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В работе исследуется задача о тени, обобщенная на области пространства Rⁿ, n ≤ 3. Под задачей о тени подразумевается нахождение минимального количества шаров, удовлетворяющих некоторым условиям, и таких, что каждая прямая, проходящая через заданную точку, пересечет хотя бы один шар из набора. Доказано, что для того, чтобы создать тень в каждой заданной точке произвольной области пространства R³ (R²) набором замкнутых или открытых шаров, попарно не пересекающихся, не содержащих заданную точку и с центрами на границе области, достаточно четырех (двух) таких шаров.