Estimates for the Gaussian Curvature of a Strictly Convex Surface and its Integral Parameters

Closed and non-closed (with planar edges) strictly convex surfaces with continuous curvatures are considered. Upper and lower bounds are obtained for the Gaussian curvature under various restrictions imposed on integral parameters of a surface: the diameter and width of the surface, the volume of th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Babenko, V.I.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145855
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Estimates for the Gaussian Curvature of a Strictly Convex Surface and its Integral Parameters / V.I. Babenko // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 1. — С. 3-15. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Closed and non-closed (with planar edges) strictly convex surfaces with continuous curvatures are considered. Upper and lower bounds are obtained for the Gaussian curvature under various restrictions imposed on integral parameters of a surface: the diameter and width of the surface, the volume of the enclosed body, the maximum area of planar cross-sections of the enclosed body, the radius of a circumscribed or inscribed ball, the height of non-closed surface and the area enclosed by the planar boundary of the surface.