2025-02-23T06:02:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-145859%22&qt=morelikethis&rows=5
2025-02-23T06:02:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-145859%22&qt=morelikethis&rows=5
2025-02-23T06:02:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:02:18-05:00 DEBUG: Deserialized SOLR response
Hypersurfaces with Lr-Pointwise 1-Type Gauss Map
In this paper, we study hypersurfaces in Еⁿ⁺¹ whose Gauss map G satisfies the equation LrG = f(G + C) for a smooth function f and a constant vector C, where Lr is the linearized operator of the (r+1)-st mean curvature of the hypersurface, i.e., Lr(f) = Tr(Pr ○∇²f) for f ∊ C∞(M), where Pr is the r-th...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2018
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/145859 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study hypersurfaces in Еⁿ⁺¹ whose Gauss map G satisfies the equation LrG = f(G + C) for a smooth function f and a constant vector C, where Lr is the linearized operator of the (r+1)-st mean curvature of the hypersurface, i.e., Lr(f) = Tr(Pr ○∇²f) for f ∊ C∞(M), where Pr is the r-th Newton transformation, ∇²f is the Hessian of f, LrG = (LrG₁, . . . ,LrGn₊₁) and G = (G₁, . . . ,Gn₊₁). We focus on hypersurfaces with constant (r + 1)-st mean curvature and constant mean curvature. We obtain some classification and characterization theorems for these classes of hypersurfaces. |
---|