On the Class of Einstein Exponential-Type Finsler Metrics

In this paper, a special class of Finsler metrics, the so-called (α, β)- metrics, which are defined by F = αφ(s), where α is a Riemannian metric and β is a 1-form, is studied. First we show that the class of almost regular metrics obtained by Shen is Einstein if and only if it reduces to the class...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Akbar Tayebi, Ali Nankali, Behzad Najafi
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145861
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Class of Einstein Exponential-Type Finsler Metrics / Akbar Tayebi, Ali Nankali, Behzad Najafi // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 1. — С. 100-114. — Бібліогр.: 25 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper, a special class of Finsler metrics, the so-called (α, β)- metrics, which are defined by F = αφ(s), where α is a Riemannian metric and β is a 1-form, is studied. First we show that the class of almost regular metrics obtained by Shen is Einstein if and only if it reduces to the class of Berwald metrics. In this case, the Riemannian metrics are Ricci-flat. Then we prove that an exponential metric is Einstein if and only if it is Ricci-flat.