Long-Time Asymptotics for the Toda Shock Problem: Non-Overlapping Spectra

We derive the long-time asymptotics for the Toda shock problem using the nonlinear steepest descent analysis for oscillatory Riemann-Hilbert factorization problems. We show that the half-plane of space/time variables splits into five main regions: The two regions far outside where the solution is cl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Egorova, I., Michor, J., Teschl, G.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145881
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Long-Time Asymptotics for the Toda Shock Problem: Non-Overlapping Spectra / I. Egorova, J. Michor, G. Teschl // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 4. — С. 406-451. — Бібліогр.: 38 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We derive the long-time asymptotics for the Toda shock problem using the nonlinear steepest descent analysis for oscillatory Riemann-Hilbert factorization problems. We show that the half-plane of space/time variables splits into five main regions: The two regions far outside where the solution is close to the free backgrounds. The middle region, where the solution can be asymptotically described by a two band solution, and two regions separating them, where the solution is asymptotically given by a slowly modulated two band solution. In particular, the form of this solution in the separating regions verifies a conjecture from Venakides, Deift, and Oba from 1991.