Bethe ansatz solutions of the Bose-Hubbard dimer

The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highligh...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Links, J., Hibberd, K.E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146048
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146048
record_format dspace
spelling irk-123456789-1460482019-02-07T01:23:50Z Bethe ansatz solutions of the Bose-Hubbard dimer Links, J. Hibberd, K.E. The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra. 2006 Article Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R12; 17B80; 81V99 http://dspace.nbuv.gov.ua/handle/123456789/146048 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra.
format Article
author Links, J.
Hibberd, K.E.
spellingShingle Links, J.
Hibberd, K.E.
Bethe ansatz solutions of the Bose-Hubbard dimer
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Links, J.
Hibberd, K.E.
author_sort Links, J.
title Bethe ansatz solutions of the Bose-Hubbard dimer
title_short Bethe ansatz solutions of the Bose-Hubbard dimer
title_full Bethe ansatz solutions of the Bose-Hubbard dimer
title_fullStr Bethe ansatz solutions of the Bose-Hubbard dimer
title_full_unstemmed Bethe ansatz solutions of the Bose-Hubbard dimer
title_sort bethe ansatz solutions of the bose-hubbard dimer
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146048
citation_txt Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT linksj betheansatzsolutionsofthebosehubbarddimer
AT hibberdke betheansatzsolutionsofthebosehubbarddimer
first_indexed 2023-05-20T17:23:40Z
last_indexed 2023-05-20T17:23:40Z
_version_ 1796153195358060544