Bethe ansatz solutions of the Bose-Hubbard dimer
The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highligh...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146048 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146048 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460482019-02-07T01:23:50Z Bethe ansatz solutions of the Bose-Hubbard dimer Links, J. Hibberd, K.E. The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra. 2006 Article Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R12; 17B80; 81V99 http://dspace.nbuv.gov.ua/handle/123456789/146048 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra. |
format |
Article |
author |
Links, J. Hibberd, K.E. |
spellingShingle |
Links, J. Hibberd, K.E. Bethe ansatz solutions of the Bose-Hubbard dimer Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Links, J. Hibberd, K.E. |
author_sort |
Links, J. |
title |
Bethe ansatz solutions of the Bose-Hubbard dimer |
title_short |
Bethe ansatz solutions of the Bose-Hubbard dimer |
title_full |
Bethe ansatz solutions of the Bose-Hubbard dimer |
title_fullStr |
Bethe ansatz solutions of the Bose-Hubbard dimer |
title_full_unstemmed |
Bethe ansatz solutions of the Bose-Hubbard dimer |
title_sort |
bethe ansatz solutions of the bose-hubbard dimer |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146048 |
citation_txt |
Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT linksj betheansatzsolutionsofthebosehubbarddimer AT hibberdke betheansatzsolutionsofthebosehubbarddimer |
first_indexed |
2023-05-20T17:23:40Z |
last_indexed |
2023-05-20T17:23:40Z |
_version_ |
1796153195358060544 |