On the one class of hyperbolic systems

The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars-Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems.

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Adler, V.E., Shabat, A.B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146060
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the one class of hyperbolic systems / V.E. Adler, A.B. Shabat // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146060
record_format dspace
spelling irk-123456789-1460602019-02-08T01:24:22Z On the one class of hyperbolic systems Adler, V.E. Shabat, A.B. The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars-Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems. 2006 Article On the one class of hyperbolic systems / V.E. Adler, A.B. Shabat // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35L75; 35Q55; 37K10; 37K35 http://dspace.nbuv.gov.ua/handle/123456789/146060 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars-Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems.
format Article
author Adler, V.E.
Shabat, A.B.
spellingShingle Adler, V.E.
Shabat, A.B.
On the one class of hyperbolic systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Adler, V.E.
Shabat, A.B.
author_sort Adler, V.E.
title On the one class of hyperbolic systems
title_short On the one class of hyperbolic systems
title_full On the one class of hyperbolic systems
title_fullStr On the one class of hyperbolic systems
title_full_unstemmed On the one class of hyperbolic systems
title_sort on the one class of hyperbolic systems
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146060
citation_txt On the one class of hyperbolic systems / V.E. Adler, A.B. Shabat // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT adlerve ontheoneclassofhyperbolicsystems
AT shabatab ontheoneclassofhyperbolicsystems
first_indexed 2023-05-20T17:23:42Z
last_indexed 2023-05-20T17:23:42Z
_version_ 1796153196631031808