On the one class of hyperbolic systems
The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars-Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems.
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146060 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the one class of hyperbolic systems / V.E. Adler, A.B. Shabat // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146060 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460602019-02-08T01:24:22Z On the one class of hyperbolic systems Adler, V.E. Shabat, A.B. The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars-Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems. 2006 Article On the one class of hyperbolic systems / V.E. Adler, A.B. Shabat // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35L75; 35Q55; 37K10; 37K35 http://dspace.nbuv.gov.ua/handle/123456789/146060 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars-Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems. |
format |
Article |
author |
Adler, V.E. Shabat, A.B. |
spellingShingle |
Adler, V.E. Shabat, A.B. On the one class of hyperbolic systems Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Adler, V.E. Shabat, A.B. |
author_sort |
Adler, V.E. |
title |
On the one class of hyperbolic systems |
title_short |
On the one class of hyperbolic systems |
title_full |
On the one class of hyperbolic systems |
title_fullStr |
On the one class of hyperbolic systems |
title_full_unstemmed |
On the one class of hyperbolic systems |
title_sort |
on the one class of hyperbolic systems |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146060 |
citation_txt |
On the one class of hyperbolic systems / V.E. Adler, A.B. Shabat // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT adlerve ontheoneclassofhyperbolicsystems AT shabatab ontheoneclassofhyperbolicsystems |
first_indexed |
2023-05-20T17:23:42Z |
last_indexed |
2023-05-20T17:23:42Z |
_version_ |
1796153196631031808 |