Non-commutative mechanics in mathematical & in condensed matter physics

Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1). Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' partic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Horváthy, P.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146063
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-commutative mechanics in mathematical & in condensed matter physics / P.A. Horváthy // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 48 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146063
record_format dspace
spelling irk-123456789-1460632019-02-07T01:23:48Z Non-commutative mechanics in mathematical & in condensed matter physics Horváthy, P.A. Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1). Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space. 2006 Article Non-commutative mechanics in mathematical & in condensed matter physics / P.A. Horváthy // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 48 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81V70; 81T75 http://dspace.nbuv.gov.ua/handle/123456789/146063 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1). Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.
format Article
author Horváthy, P.A.
spellingShingle Horváthy, P.A.
Non-commutative mechanics in mathematical & in condensed matter physics
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Horváthy, P.A.
author_sort Horváthy, P.A.
title Non-commutative mechanics in mathematical & in condensed matter physics
title_short Non-commutative mechanics in mathematical & in condensed matter physics
title_full Non-commutative mechanics in mathematical & in condensed matter physics
title_fullStr Non-commutative mechanics in mathematical & in condensed matter physics
title_full_unstemmed Non-commutative mechanics in mathematical & in condensed matter physics
title_sort non-commutative mechanics in mathematical & in condensed matter physics
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146063
citation_txt Non-commutative mechanics in mathematical & in condensed matter physics / P.A. Horváthy // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 48 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT horvathypa noncommutativemechanicsinmathematicalincondensedmatterphysics
first_indexed 2023-05-20T17:23:43Z
last_indexed 2023-05-20T17:23:43Z
_version_ 1796153196946653184