Non-commutative mechanics in mathematical & in condensed matter physics
Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1). Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' partic...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146063 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-commutative mechanics in mathematical & in condensed matter physics / P.A. Horváthy // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 48 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146063 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460632019-02-07T01:23:48Z Non-commutative mechanics in mathematical & in condensed matter physics Horváthy, P.A. Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1). Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space. 2006 Article Non-commutative mechanics in mathematical & in condensed matter physics / P.A. Horváthy // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 48 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81V70; 81T75 http://dspace.nbuv.gov.ua/handle/123456789/146063 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1). Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space. |
format |
Article |
author |
Horváthy, P.A. |
spellingShingle |
Horváthy, P.A. Non-commutative mechanics in mathematical & in condensed matter physics Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Horváthy, P.A. |
author_sort |
Horváthy, P.A. |
title |
Non-commutative mechanics in mathematical & in condensed matter physics |
title_short |
Non-commutative mechanics in mathematical & in condensed matter physics |
title_full |
Non-commutative mechanics in mathematical & in condensed matter physics |
title_fullStr |
Non-commutative mechanics in mathematical & in condensed matter physics |
title_full_unstemmed |
Non-commutative mechanics in mathematical & in condensed matter physics |
title_sort |
non-commutative mechanics in mathematical & in condensed matter physics |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146063 |
citation_txt |
Non-commutative mechanics in mathematical & in condensed matter physics / P.A. Horváthy // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 48 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT horvathypa noncommutativemechanicsinmathematicalincondensedmatterphysics |
first_indexed |
2023-05-20T17:23:43Z |
last_indexed |
2023-05-20T17:23:43Z |
_version_ |
1796153196946653184 |