Multivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices

We study multivariable Christoffel-Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we ob...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Rosengren, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146068
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices / H. Rosengren // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study multivariable Christoffel-Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, for such kernels. In subsequent work, these results are applied in combinatorics (enumeration of marked shifted tableaux) and number theory (representation of integers as sums of squares).