Fermion on curved spaces, symmetries, and quantum anomalies

We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved background...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Visinescu, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146084
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fermion on curved spaces, symmetries, and quantum anomalies / M. Visinescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146084
record_format dspace
spelling irk-123456789-1460842019-02-08T01:23:12Z Fermion on curved spaces, symmetries, and quantum anomalies Visinescu, M. We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly. 2006 Article Fermion on curved spaces, symmetries, and quantum anomalies / M. Visinescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 83C47; 83C40; 83C20 http://dspace.nbuv.gov.ua/handle/123456789/146084 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly.
format Article
author Visinescu, M.
spellingShingle Visinescu, M.
Fermion on curved spaces, symmetries, and quantum anomalies
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Visinescu, M.
author_sort Visinescu, M.
title Fermion on curved spaces, symmetries, and quantum anomalies
title_short Fermion on curved spaces, symmetries, and quantum anomalies
title_full Fermion on curved spaces, symmetries, and quantum anomalies
title_fullStr Fermion on curved spaces, symmetries, and quantum anomalies
title_full_unstemmed Fermion on curved spaces, symmetries, and quantum anomalies
title_sort fermion on curved spaces, symmetries, and quantum anomalies
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146084
citation_txt Fermion on curved spaces, symmetries, and quantum anomalies / M. Visinescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT visinescum fermiononcurvedspacessymmetriesandquantumanomalies
first_indexed 2023-05-20T17:23:46Z
last_indexed 2023-05-20T17:23:46Z
_version_ 1796153199171731456