Integrable hierarchy of higher nonlinear Schrödinger type equations
Addition of higher nonlinear terms to the well known integrable nonlinear Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the system nonintegrable. We present a systematic method through a novel Eckhaus-Kundu hierarchy, which can generate higher nonlinearities in t...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146089 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrable hierarchy of higher nonlinear Schrödinger type equations / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146089 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460892019-02-08T01:23:05Z Integrable hierarchy of higher nonlinear Schrödinger type equations Kundu, A. Addition of higher nonlinear terms to the well known integrable nonlinear Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the system nonintegrable. We present a systematic method through a novel Eckhaus-Kundu hierarchy, which can generate higher nonlinearities in the NLS and derivative NLS equations preserving their integrability. Moreover, similar nonlinear integrable extensions can be made again in a hierarchical way for each of the equations in the known integrable NLS and derivative NLS hierarchies with higher order LD, without changing their LD. 2006 Article Integrable hierarchy of higher nonlinear Schrödinger type equations / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35G20; 37C85; 35G25; 37E99 http://dspace.nbuv.gov.ua/handle/123456789/146089 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Addition of higher nonlinear terms to the well known integrable nonlinear Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the system nonintegrable. We present a systematic method through a novel Eckhaus-Kundu hierarchy, which can generate higher nonlinearities in the NLS and derivative NLS equations preserving their integrability. Moreover, similar nonlinear integrable extensions can be made again in a hierarchical way for each of the equations in the known integrable NLS and derivative NLS hierarchies with higher order LD, without changing their LD. |
format |
Article |
author |
Kundu, A. |
spellingShingle |
Kundu, A. Integrable hierarchy of higher nonlinear Schrödinger type equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kundu, A. |
author_sort |
Kundu, A. |
title |
Integrable hierarchy of higher nonlinear Schrödinger type equations |
title_short |
Integrable hierarchy of higher nonlinear Schrödinger type equations |
title_full |
Integrable hierarchy of higher nonlinear Schrödinger type equations |
title_fullStr |
Integrable hierarchy of higher nonlinear Schrödinger type equations |
title_full_unstemmed |
Integrable hierarchy of higher nonlinear Schrödinger type equations |
title_sort |
integrable hierarchy of higher nonlinear schrödinger type equations |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146089 |
citation_txt |
Integrable hierarchy of higher nonlinear Schrödinger type equations / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kundua integrablehierarchyofhighernonlinearschrodingertypeequations |
first_indexed |
2023-05-20T17:23:47Z |
last_indexed |
2023-05-20T17:23:47Z |
_version_ |
1796153199699165184 |