Integrable hierarchy of higher nonlinear Schrödinger type equations

Addition of higher nonlinear terms to the well known integrable nonlinear Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the system nonintegrable. We present a systematic method through a novel Eckhaus-Kundu hierarchy, which can generate higher nonlinearities in t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Kundu, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146089
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrable hierarchy of higher nonlinear Schrödinger type equations / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146089
record_format dspace
spelling irk-123456789-1460892019-02-08T01:23:05Z Integrable hierarchy of higher nonlinear Schrödinger type equations Kundu, A. Addition of higher nonlinear terms to the well known integrable nonlinear Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the system nonintegrable. We present a systematic method through a novel Eckhaus-Kundu hierarchy, which can generate higher nonlinearities in the NLS and derivative NLS equations preserving their integrability. Moreover, similar nonlinear integrable extensions can be made again in a hierarchical way for each of the equations in the known integrable NLS and derivative NLS hierarchies with higher order LD, without changing their LD. 2006 Article Integrable hierarchy of higher nonlinear Schrödinger type equations / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35G20; 37C85; 35G25; 37E99 http://dspace.nbuv.gov.ua/handle/123456789/146089 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Addition of higher nonlinear terms to the well known integrable nonlinear Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the system nonintegrable. We present a systematic method through a novel Eckhaus-Kundu hierarchy, which can generate higher nonlinearities in the NLS and derivative NLS equations preserving their integrability. Moreover, similar nonlinear integrable extensions can be made again in a hierarchical way for each of the equations in the known integrable NLS and derivative NLS hierarchies with higher order LD, without changing their LD.
format Article
author Kundu, A.
spellingShingle Kundu, A.
Integrable hierarchy of higher nonlinear Schrödinger type equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kundu, A.
author_sort Kundu, A.
title Integrable hierarchy of higher nonlinear Schrödinger type equations
title_short Integrable hierarchy of higher nonlinear Schrödinger type equations
title_full Integrable hierarchy of higher nonlinear Schrödinger type equations
title_fullStr Integrable hierarchy of higher nonlinear Schrödinger type equations
title_full_unstemmed Integrable hierarchy of higher nonlinear Schrödinger type equations
title_sort integrable hierarchy of higher nonlinear schrödinger type equations
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146089
citation_txt Integrable hierarchy of higher nonlinear Schrödinger type equations / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kundua integrablehierarchyofhighernonlinearschrodingertypeequations
first_indexed 2023-05-20T17:23:47Z
last_indexed 2023-05-20T17:23:47Z
_version_ 1796153199699165184