Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state ω on E, which is subadditive. More...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146093 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Modularity, Atomicity and States in Archimedean Lattice Effect Algebras / J. Paseka // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 36 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146093 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460932019-02-08T01:23:53Z Modularity, Atomicity and States in Archimedean Lattice Effect Algebras Paseka, J. Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras. 2010 Article Modularity, Atomicity and States in Archimedean Lattice Effect Algebras / J. Paseka // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 06C15; 03G12; 81P10 http://dspace.nbuv.gov.ua/handle/123456789/146093 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras. |
format |
Article |
author |
Paseka, J. |
spellingShingle |
Paseka, J. Modularity, Atomicity and States in Archimedean Lattice Effect Algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Paseka, J. |
author_sort |
Paseka, J. |
title |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras |
title_short |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras |
title_full |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras |
title_fullStr |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras |
title_full_unstemmed |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras |
title_sort |
modularity, atomicity and states in archimedean lattice effect algebras |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146093 |
citation_txt |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras / J. Paseka // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 36 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT pasekaj modularityatomicityandstatesinarchimedeanlatticeeffectalgebras |
first_indexed |
2023-05-20T17:23:48Z |
last_indexed |
2023-05-20T17:23:48Z |
_version_ |
1796153200122789888 |