Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups

Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 0.5n(n − 1) + 1, for almost a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Calvaruso, G., García-Río, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146096
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups / E. García-Río // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146096
record_format dspace
spelling irk-123456789-1460962019-02-08T01:23:33Z Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups Calvaruso, G. García-Río, E. Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 0.5n(n − 1) + 1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25–33]. We shall prove that the curvature tensor of these spaces satisfi several interesting algebraic properties. In particular, we will show that Egorov spaces are Ivanov–Petrova manifolds, curvature-Ricci commuting (indeed, semi-symmetric) and P-spaces, and that ε-spaces are Ivanov–Petrova and curvature-curvature commuting manifolds. 2010 Article Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups / E. García-Río // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C50; 53C20 http://dspace.nbuv.gov.ua/handle/123456789/146096 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 0.5n(n − 1) + 1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25–33]. We shall prove that the curvature tensor of these spaces satisfi several interesting algebraic properties. In particular, we will show that Egorov spaces are Ivanov–Petrova manifolds, curvature-Ricci commuting (indeed, semi-symmetric) and P-spaces, and that ε-spaces are Ivanov–Petrova and curvature-curvature commuting manifolds.
format Article
author Calvaruso, G.
García-Río, E.
spellingShingle Calvaruso, G.
García-Río, E.
Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Calvaruso, G.
García-Río, E.
author_sort Calvaruso, G.
title Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
title_short Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
title_full Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
title_fullStr Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
title_full_unstemmed Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
title_sort algebraic properties of curvature operators in lorentzian manifolds with large isometry groups
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146096
citation_txt Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups / E. García-Río // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT calvarusog algebraicpropertiesofcurvatureoperatorsinlorentzianmanifoldswithlargeisometrygroups
AT garciarioe algebraicpropertiesofcurvatureoperatorsinlorentzianmanifoldswithlargeisometrygroups
first_indexed 2023-05-20T17:23:48Z
last_indexed 2023-05-20T17:23:48Z
_version_ 1796153200440508416