Quantum Entanglement and Projective Ring Geometry

The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 1...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Planat, M., Saniga, M., Kibler, M.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146101
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Entanglement and Projective Ring Geometry / M. Planat, M. Saniga, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146101
record_format dspace
spelling irk-123456789-1461012019-02-08T01:23:30Z Quantum Entanglement and Projective Ring Geometry Planat, M. Saniga, M. Kibler, M.R. The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15 × 15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of n copies of the Galois field GF(2), with n = 2, 3 and 4. 2006 Article Quantum Entanglement and Projective Ring Geometry / M. Planat, M. Saniga, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 33 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81P15; 51C05; 13M05; 13A15; 51N15; 81R05 http://dspace.nbuv.gov.ua/handle/123456789/146101 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15 × 15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of n copies of the Galois field GF(2), with n = 2, 3 and 4.
format Article
author Planat, M.
Saniga, M.
Kibler, M.R.
spellingShingle Planat, M.
Saniga, M.
Kibler, M.R.
Quantum Entanglement and Projective Ring Geometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Planat, M.
Saniga, M.
Kibler, M.R.
author_sort Planat, M.
title Quantum Entanglement and Projective Ring Geometry
title_short Quantum Entanglement and Projective Ring Geometry
title_full Quantum Entanglement and Projective Ring Geometry
title_fullStr Quantum Entanglement and Projective Ring Geometry
title_full_unstemmed Quantum Entanglement and Projective Ring Geometry
title_sort quantum entanglement and projective ring geometry
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146101
citation_txt Quantum Entanglement and Projective Ring Geometry / M. Planat, M. Saniga, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 33 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT planatm quantumentanglementandprojectiveringgeometry
AT sanigam quantumentanglementandprojectiveringgeometry
AT kiblermr quantumentanglementandprojectiveringgeometry
first_indexed 2023-05-20T17:23:49Z
last_indexed 2023-05-20T17:23:49Z
_version_ 1796153200965844992