The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients

The general KdV equation (gKdV) derived by T. Chou is one of the famous (1 + 1) dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable. In this paper a higher-dimensional gKdV equation, which is integrable in the sense of the Painlevé test, is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Kobayashi, T., Toda, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146104
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients / T. Kobayashi, K. Toda // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 70 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146104
record_format dspace
spelling irk-123456789-1461042019-02-08T01:23:05Z The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients Kobayashi, T. Toda, K. The general KdV equation (gKdV) derived by T. Chou is one of the famous (1 + 1) dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable. In this paper a higher-dimensional gKdV equation, which is integrable in the sense of the Painlevé test, is presented. A transformation that links this equation to the canonical form of the Calogero-Bogoyavlenskii-Schiff equation is found. Furthermore, the form and similar transformation for the higher-dimensional modified gKdV equation are also obtained. 2006 Article The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients / T. Kobayashi, K. Toda // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 70 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 35Q53 http://dspace.nbuv.gov.ua/handle/123456789/146104 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The general KdV equation (gKdV) derived by T. Chou is one of the famous (1 + 1) dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable. In this paper a higher-dimensional gKdV equation, which is integrable in the sense of the Painlevé test, is presented. A transformation that links this equation to the canonical form of the Calogero-Bogoyavlenskii-Schiff equation is found. Furthermore, the form and similar transformation for the higher-dimensional modified gKdV equation are also obtained.
format Article
author Kobayashi, T.
Toda, K.
spellingShingle Kobayashi, T.
Toda, K.
The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kobayashi, T.
Toda, K.
author_sort Kobayashi, T.
title The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients
title_short The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients
title_full The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients
title_fullStr The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients
title_full_unstemmed The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients
title_sort painlevé test and reducibility to the canonical forms for higher-dimensional soliton equations with variable-coefficients
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146104
citation_txt The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients / T. Kobayashi, K. Toda // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 70 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kobayashit thepainlevetestandreducibilitytothecanonicalformsforhigherdimensionalsolitonequationswithvariablecoefficients
AT todak thepainlevetestandreducibilitytothecanonicalformsforhigherdimensionalsolitonequationswithvariablecoefficients
AT kobayashit painlevetestandreducibilitytothecanonicalformsforhigherdimensionalsolitonequationswithvariablecoefficients
AT todak painlevetestandreducibilitytothecanonicalformsforhigherdimensionalsolitonequationswithvariablecoefficients
first_indexed 2023-05-20T17:23:50Z
last_indexed 2023-05-20T17:23:50Z
_version_ 1796153201280417792