Prolongation Loop Algebras for a Solitonic System of Equations

We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Agrotis, M.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146106
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Prolongation Loop Algebras for a Solitonic System of Equations / M.A. Agrotis // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146106
record_format dspace
spelling irk-123456789-1461062019-02-08T01:23:34Z Prolongation Loop Algebras for a Solitonic System of Equations Agrotis, M.A. We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials. 2006 Article Prolongation Loop Algebras for a Solitonic System of Equations / M.A. Agrotis // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 24 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 37N20; 35A30; 35Q60; 78A60 http://dspace.nbuv.gov.ua/handle/123456789/146106 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials.
format Article
author Agrotis, M.A.
spellingShingle Agrotis, M.A.
Prolongation Loop Algebras for a Solitonic System of Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Agrotis, M.A.
author_sort Agrotis, M.A.
title Prolongation Loop Algebras for a Solitonic System of Equations
title_short Prolongation Loop Algebras for a Solitonic System of Equations
title_full Prolongation Loop Algebras for a Solitonic System of Equations
title_fullStr Prolongation Loop Algebras for a Solitonic System of Equations
title_full_unstemmed Prolongation Loop Algebras for a Solitonic System of Equations
title_sort prolongation loop algebras for a solitonic system of equations
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146106
citation_txt Prolongation Loop Algebras for a Solitonic System of Equations / M.A. Agrotis // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 24 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT agrotisma prolongationloopalgebrasforasolitonicsystemofequations
first_indexed 2023-05-20T17:23:50Z
last_indexed 2023-05-20T17:23:50Z
_version_ 1796153201490132992