Generalized Ellipsoidal and Sphero-Conal Harmonics
Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stiel...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146110 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized Ellipsoidal and Sphero-Conal Harmonics / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146110 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1461102019-02-08T01:23:45Z Generalized Ellipsoidal and Sphero-Conal Harmonics Volkmer, H. Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids. 2006 Article Generalized Ellipsoidal and Sphero-Conal Harmonics / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C50; 35C10 http://dspace.nbuv.gov.ua/handle/123456789/146110 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids. |
format |
Article |
author |
Volkmer, H. |
spellingShingle |
Volkmer, H. Generalized Ellipsoidal and Sphero-Conal Harmonics Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Volkmer, H. |
author_sort |
Volkmer, H. |
title |
Generalized Ellipsoidal and Sphero-Conal Harmonics |
title_short |
Generalized Ellipsoidal and Sphero-Conal Harmonics |
title_full |
Generalized Ellipsoidal and Sphero-Conal Harmonics |
title_fullStr |
Generalized Ellipsoidal and Sphero-Conal Harmonics |
title_full_unstemmed |
Generalized Ellipsoidal and Sphero-Conal Harmonics |
title_sort |
generalized ellipsoidal and sphero-conal harmonics |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146110 |
citation_txt |
Generalized Ellipsoidal and Sphero-Conal Harmonics / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT volkmerh generalizedellipsoidalandspheroconalharmonics |
first_indexed |
2023-05-20T17:23:51Z |
last_indexed |
2023-05-20T17:23:51Z |
_version_ |
1796153201911660544 |