Generalized Ellipsoidal and Sphero-Conal Harmonics

Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stiel...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Volkmer, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146110
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized Ellipsoidal and Sphero-Conal Harmonics / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146110
record_format dspace
spelling irk-123456789-1461102019-02-08T01:23:45Z Generalized Ellipsoidal and Sphero-Conal Harmonics Volkmer, H. Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids. 2006 Article Generalized Ellipsoidal and Sphero-Conal Harmonics / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C50; 35C10 http://dspace.nbuv.gov.ua/handle/123456789/146110 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids.
format Article
author Volkmer, H.
spellingShingle Volkmer, H.
Generalized Ellipsoidal and Sphero-Conal Harmonics
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Volkmer, H.
author_sort Volkmer, H.
title Generalized Ellipsoidal and Sphero-Conal Harmonics
title_short Generalized Ellipsoidal and Sphero-Conal Harmonics
title_full Generalized Ellipsoidal and Sphero-Conal Harmonics
title_fullStr Generalized Ellipsoidal and Sphero-Conal Harmonics
title_full_unstemmed Generalized Ellipsoidal and Sphero-Conal Harmonics
title_sort generalized ellipsoidal and sphero-conal harmonics
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146110
citation_txt Generalized Ellipsoidal and Sphero-Conal Harmonics / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT volkmerh generalizedellipsoidalandspheroconalharmonics
first_indexed 2023-05-20T17:23:51Z
last_indexed 2023-05-20T17:23:51Z
_version_ 1796153201911660544