q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146112 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy / Jingsong He, Yinghua Li, Yi Cheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 40 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146112 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1461122019-02-08T01:23:10Z q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy He, Jingsong Li, Yinghua Cheng, Yi Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP (q-cKP) hierarchy, i.e. l-constraints of q-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of q-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear q-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of q-deformation (q-effects) in single q-soliton from the simplest τ function of the q-KP hierarchy and in multi-q-soliton from one-component q-cKP hierarchy, and their dependence of x and q, were also presented. Finally, we observe that q-soliton tends to the usual soliton of the KP equation when x → 0 and q → 1, simultaneously. 2006 Article q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy / Jingsong He, Yinghua Li, Yi Cheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 40 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 35Q51; 35Q53; 35Q55 http://dspace.nbuv.gov.ua/handle/123456789/146112 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP (q-cKP) hierarchy, i.e. l-constraints of q-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of q-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear q-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of q-deformation (q-effects) in single q-soliton from the simplest τ function of the q-KP hierarchy and in multi-q-soliton from one-component q-cKP hierarchy, and their dependence of x and q, were also presented. Finally, we observe that q-soliton tends to the usual soliton of the KP equation when x → 0 and q → 1, simultaneously. |
format |
Article |
author |
He, Jingsong Li, Yinghua Cheng, Yi |
spellingShingle |
He, Jingsong Li, Yinghua Cheng, Yi q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
He, Jingsong Li, Yinghua Cheng, Yi |
author_sort |
He, Jingsong |
title |
q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy |
title_short |
q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy |
title_full |
q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy |
title_fullStr |
q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy |
title_full_unstemmed |
q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy |
title_sort |
q-deformed kp hierarchy and q-deformed constrained kp hierarchy |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146112 |
citation_txt |
q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy / Jingsong He, Yinghua Li, Yi Cheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 40 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hejingsong qdeformedkphierarchyandqdeformedconstrainedkphierarchy AT liyinghua qdeformedkphierarchyandqdeformedconstrainedkphierarchy AT chengyi qdeformedkphierarchyandqdeformedconstrainedkphierarchy |
first_indexed |
2023-05-20T17:23:51Z |
last_indexed |
2023-05-20T17:23:51Z |
_version_ |
1796153202123472896 |