q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: He, Jingsong, Li, Yinghua, Cheng, Yi
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146112
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy / Jingsong He, Yinghua Li, Yi Cheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146112
record_format dspace
spelling irk-123456789-1461122019-02-08T01:23:10Z q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy He, Jingsong Li, Yinghua Cheng, Yi Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP (q-cKP) hierarchy, i.e. l-constraints of q-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of q-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear q-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of q-deformation (q-effects) in single q-soliton from the simplest τ function of the q-KP hierarchy and in multi-q-soliton from one-component q-cKP hierarchy, and their dependence of x and q, were also presented. Finally, we observe that q-soliton tends to the usual soliton of the KP equation when x → 0 and q → 1, simultaneously. 2006 Article q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy / Jingsong He, Yinghua Li, Yi Cheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 40 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 35Q51; 35Q53; 35Q55 http://dspace.nbuv.gov.ua/handle/123456789/146112 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP (q-cKP) hierarchy, i.e. l-constraints of q-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of q-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear q-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of q-deformation (q-effects) in single q-soliton from the simplest τ function of the q-KP hierarchy and in multi-q-soliton from one-component q-cKP hierarchy, and their dependence of x and q, were also presented. Finally, we observe that q-soliton tends to the usual soliton of the KP equation when x → 0 and q → 1, simultaneously.
format Article
author He, Jingsong
Li, Yinghua
Cheng, Yi
spellingShingle He, Jingsong
Li, Yinghua
Cheng, Yi
q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
Symmetry, Integrability and Geometry: Methods and Applications
author_facet He, Jingsong
Li, Yinghua
Cheng, Yi
author_sort He, Jingsong
title q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
title_short q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
title_full q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
title_fullStr q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
title_full_unstemmed q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
title_sort q-deformed kp hierarchy and q-deformed constrained kp hierarchy
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146112
citation_txt q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy / Jingsong He, Yinghua Li, Yi Cheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 40 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT hejingsong qdeformedkphierarchyandqdeformedconstrainedkphierarchy
AT liyinghua qdeformedkphierarchyandqdeformedconstrainedkphierarchy
AT chengyi qdeformedkphierarchyandqdeformedconstrainedkphierarchy
first_indexed 2023-05-20T17:23:51Z
last_indexed 2023-05-20T17:23:51Z
_version_ 1796153202123472896