PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues
We prove the reality of the perturbed eigenvalues of some PT symmetric Hamiltonians of physical interest by means of stability methods. In particular we study 2-dimensional generalized harmonic oscillators with polynomial perturbation and the one-dimensional x²(ix)ⁿ for −1<n<0.
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146116 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues / E. Caliceti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146116 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1461162019-02-08T01:23:15Z PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues Caliceti, E. Cannata, F. Graffi, S. We prove the reality of the perturbed eigenvalues of some PT symmetric Hamiltonians of physical interest by means of stability methods. In particular we study 2-dimensional generalized harmonic oscillators with polynomial perturbation and the one-dimensional x²(ix)ⁿ for −1<n<0. 2010 Article PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues / E. Caliceti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 47A55; 47A75; 81Q15; 34L40; 35J10 http://dspace.nbuv.gov.ua/handle/123456789/146116 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove the reality of the perturbed eigenvalues of some PT symmetric Hamiltonians of physical interest by means of stability methods. In particular we study 2-dimensional generalized harmonic oscillators with polynomial perturbation and the one-dimensional x²(ix)ⁿ for −1<n<0. |
format |
Article |
author |
Caliceti, E. Cannata, F. Graffi, S. |
spellingShingle |
Caliceti, E. Cannata, F. Graffi, S. PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Caliceti, E. Cannata, F. Graffi, S. |
author_sort |
Caliceti, E. |
title |
PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues |
title_short |
PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues |
title_full |
PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues |
title_fullStr |
PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues |
title_full_unstemmed |
PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues |
title_sort |
pt symmetric schrödinger operators: reality of the perturbed eigenvalues |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146116 |
citation_txt |
PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues / E. Caliceti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT calicetie ptsymmetricschrodingeroperatorsrealityoftheperturbedeigenvalues AT cannataf ptsymmetricschrodingeroperatorsrealityoftheperturbedeigenvalues AT graffis ptsymmetricschrodingeroperatorsrealityoftheperturbedeigenvalues |
first_indexed |
2023-05-20T17:23:52Z |
last_indexed |
2023-05-20T17:23:52Z |
_version_ |
1796153202546049024 |